STNRGxxxA

Digital controller for power conversion applications with up to 6 programmable PWM generators, 96 MHz PLL

Features

- Up to 6 programmable PWM generators (SMED - "State Machine Event Driven")
 - 10 ns event detection and reaction
 - Max.1.3 ns PWM resolution
 - Single, coupled and two coupled operational modes
 - Up to 3 internal/external events per SMED
- 4 analog comparators
 - 4 internal 4-bit references
 - Up to 4 external references
 - Less than 50 ns propagation time
 - Continuous comparison cycle
 - Configurable hysteresis voltage levels
- ADCs (up to 8 channels)
 - 10-bit precision, with operational amplifier to extend resolution to 12-bit equivalent
 - Sequencer functionality
 - Input impedance: 1 MΩ
 - Configurable gain value: x1 and x4
- Integrated microcontroller
 - Advanced STM8[®] core with Harvard architecture and 3-stage pipeline
 - Max. f_{CPU}: 16 MHz
- Memories
 - Flash and E²PROM with read while write (RWW) and error correction code (ECC)
 - Program memory: 32 Kbytes Flash; data retention 15 years at 85 °C after 10 kcycles at 25 °C

October 2016

DocID027799 Rev 2

Datasheet - production data

- Data memory: 1 Kbyte true data E²PROM; data retention:15 years at 85 °C after 100 kcycles at 85 °C
- RAM: 6 Kbytes
- Clock management
 - Internal 96 MHz PLL
 - Low power oscillator circuit for external crystal resonator or direct clock input
 - Internal, user-trimmable 16 MHz RC and low power 153.6 kHz RC oscillators
 - Clock security system with clock monitor
- Basic peripherals
 - System, auxiliary and basic timers
 - IWDG/WWDG watchdog, AWU, ITC
- Reset and supply management
 - Multiple low power modes (wait, slow, autowakeup, Halt) with user definable clock gating
 - Low consumption power-on and powerdown reset
- I/O
 - Multifunction bidirectional GPIO with highly robust design, immune against current injection
 - Fast digital input DIGIN, with configurable pull-up
- Communication interfaces
 - UART asynchronous with SW flow control and bootloader support
 - I²C master/slave fast-slow speed rate
- Operating temperature: -40 °C up to 105 °C.

Table 1. Device summary

Part number	Package
STNRG388A	TSSOP38
STNRG328A	VFQFPN32
STNRG288A	TSSOP28

This is information on a product in full production.

1/131

Contents

1	Desc	ription	11
2	STN	RG fam	ily features list 12
3		•	SMED
4	-		hitecture
5	Prod	uct ove	erview
	5.1	SMED	(state machine event driven): configurable PWM generator 16
		5.1.1	SMED coupling schemes
		5.1.2	Connection matrix
	5.2	Interna	al controller (CPU)
		5.2.1	Architecture and registers
		5.2.2	Addressing
		5.2.3	Instruction set
		5.2.4	Single wire interface module (SWIM)
		5.2.5	Debug module
	5.3	Basic	peripherals
		5.3.1	Vectored interrupt controller
		5.3.2	Timers
		5.3.3	Flash program and data E ² PROM23
		5.3.4	Architecture
		5.3.5	Write protection (WP)
		5.3.6	Protection of user boot code (UBC)
		5.3.7	Read-out protection (ROP)24
	5.4	Clock	controller
		5.4.1	Internal 16 MHz RC oscillator (HSI)
		5.4.2	Internal 153.6 kHz RC oscillator (LSI)
		5.4.3	Internal 96 MHz PLL
		5.4.4	External clock input/crystal oscillator (HSE)

	5.5	Power n	nanagement	26
	5.6	Commu	nication interfaces	27
		5.6.1	Universal asynchronous receiver/transmitter (UART)	. 27
		5.6.2	Inter-integrated circuit interface (I ² C)	. 27
		5.6.3	Digital addressable lighting interface (DALI)	. 28
	5.7	Analog-	to-digital converter (ADC)	29
	5.8	Analog	comparators	29
				• •
6		-	in description	
	6.1	Pinout .		31
	6.2	Pin dese	cription	34
	6.3	Input/ou	tput specifications	36
7	l/O m	ultifunc	tion signal configuration	37
	7.1	Multifun	ction configuration policy	37
	7.2	Port P0	I/O multifunction configuration signal	37
		7.2.1	Alternate function P0 configuration signals	. 37
		7.2.2	Port P0 diagnostic signals	. 38
		7.2.3	Port P0 I/O functional multiplexing signal	. 39
		7.2.4	P0 interrupt capability	. 39
		7.2.5	P0 programmable pull-up and speed feature	. 39
	7.3	Port P1	I/O multifunction configuration signal	40
		7.3.1	Port P1 I/O multiplexing signal	
		7.3.2	P1 interrupt capability	. 41
		7.3.3	P1 programmable pull-up feature	. 41
	7.4	Port P2	I/O multifunction configuration signal	41
		7.4.1	P2 ADC hardware trigger	. 42
		7.4.2	P2 interrupt capability	
		7.4.3	P2 programmable pull-up feature	. 43
	7.5	Port P3	analog signal	
		7.5.1	P3 ADC conversion request	
		7.5.2	P3 interrupt capability	. 43

	7.6	Multifun	ction port configuration registers 4	4
		MSC_IO	MXP0 (Port P1 I/O MUX control register)	4
		MSC_IO	MXP1 (Port P1 I/O MUX control register)	-5
		MSC_IO	MXP2 (Port P2 I/O MUX control register)	6
		MSC_INI	PP2AUX1 (INPP aux register)	.8
8	Memo	ory and	register map	9
	8.1	Memory	map overview	9
	8.2	Register	[.] map	0
		8.2.1	General purpose I/O GPIO0 register map5	0
		8.2.2	General purpose I/O GPIO1 register map5	0
		8.2.3	Miscellaneous registers	51
		8.2.4	Flash and E ² PROM non-volatile memories	4
		8.2.5	Reset register	4
		8.2.6	Clock controller register	5
		8.2.7	WWDG timers	6
		8.2.8	IWDG timers	6
		8.2.9	AWU timers	6
		8.2.10	Inter-integrated circuit interface (I ² C)	7
		8.2.11	Universal asynchronous receiver/transmitter (UART)	7
		8.2.12	System timer registers	8
		8.2.13	Auxiliary timer registers	8
		8.2.14	Basic timer0 registers	8
		8.2.15	Basic timer1 registers	9
		8.2.16	Digital addressable lighting interface (DALI)	9
		8.2.17	DALI noise rejection filter registers5	9
		8.2.18	Analog-to-digital converter (ADC) 6	0
		8.2.19	State machine event driven (SMEDs)6	1
		8.2.20	CPU register	2
		8.2.21	Global configuration register	2
		8.2.22	Interrupt controller	3
		8.2.23	SWIM control register	3
9	Interr	upt tabl	e6	4

DocID027799 Rev 2

10	Optio	n bytes		65
	10.1	Option t	byte register overview	66
	10.2	Option b	byte register description	71
		10.2.1	ROP (memory read-out protection register)	71
		10.2.2	UBC (UBC user boot code register)	71
		10.2.3	nUBC (UBC user boot code register protection)	72
		10.2.4	GENCFG (general configuration register)	72
		10.2.5	nGENCFG (general configuration register protection)	73
		10.2.6	MISCUOPT (miscellaneous configuration register)	73
		10.2.7	nMISCUOPT (miscellaneous configuration register protection)	74
		10.2.8	CLKCTL (CKC configuration register)	74
		10.2.9	nCLKCTL (CKC configuration register protection)	75
		10.2.10	HSESTAB (HSE clock stabilization register)	75
		10.2.11	nHSESTAB (HSE clock stabilization register protection)	76
		10.2.12	ENHFEAT (EXP features configuration register)	76
		10.2.13	nENHFEAT (EXP features configuration register)	77
		10.2.14	WAITSTATE (Flash wait state register)	77
		10.2.15	nWAITSTATE (Flash wait state register protection)	78
		10.2.16	AFR_IOMXP0 (alternative Port0 configuration register)	78
		10.2.17	nAFR_IOMXP0 (alternative Port0 configuration register protection)	79
		10.2.18	AFR_IOMXP1 (alternative Port1 configuration register)	79
		10.2.19	nAFR_IOMXP1 (alternative Port1 configuration register protection)	80
		10.2.20	AFR_IOMXP2 (alternative Port2 configuration register)	80
		10.2.21	nAFR_IOMXP2 (alternative Port2 configuration register protection)	81
		10.2.22	MSC_OPT0 (miscellaneous configuration reg0)	81
		10.2.23	nMSC_OPT0 (miscellaneous configuration reg0 protection)	82
		10.2.24	OPTBL (option byte bootloader)	82
		10.2.25	nOPTBL (option byte boot loader protection)	83
11	Devid	e identi:	fication	84
	11.1	Unique	ID	84
	11.2	•	ID	
12			aracteristics	
	12.1	Parame	ter conditions	86
		12.1.1	Minimum and maximum values	
		12.1.2	Typical values	86

		12.1.3	Typical curves
		12.1.4	Typical current consumption
		12.1.5	Loading capacitors
		12.1.6	Pin output voltage
	12.2	Absolut	e maximum ratings
	12.3	Operati	ng conditions
		12.3.1	VOUT external capacitor
		12.3.2	Supply current characteristics
		12.3.3	Low power mode wake-up time
		12.3.4	External clock sources and timing characteristics
		12.3.5	Internal clock sources and timing characteristics
		12.3.6	Memory characteristics
		12.3.7	I/O port pin characteristics
		12.3.8	Typical output level curves
		12.3.9	Reset pin characteristics 113
		12.3.10	I ² C interface characteristics 113
		12.3.11	10-bit SAR ADC characteristics
		12.3.12	Analog comparator characteristics
		12.3.13	DAC characteristics
	12.4	EMC ch	naracteristics
		12.4.1	Electrostatic discharge (ESD) 121
		12.4.2	Static latch-up
13	Ther	mal cha	racteristics
14	Pack	age info	rmation
	14.1	TSSOP	38 package information 123
	14.2	VFQFP	N32 package information 125
	14.3	TSSOP	28 package information 127
15	STNF	RG deve	lopment tools 129
16	Orde	r codes	
17	Revis	sion hist	tory

List of tables

Table 1.	Device summary	1
Table 2.	STNRG family features list	. 12
Table 3.	Connection matrix interconnection	. 19
Table 4.	Pin description	. 34
Table 5.	Multifunction configuration registers	. 37
Table 6.	P0 internal multiplexing signals	
Table 7.	Port P1 I/O multiplexing signal	
Table 8.	Port P2 I/O multiplexing signal	
Table 9.	MSC_IOMXP0 (Port P1 I/O MUX control register)	
Table 10.	MSC_IOMXP1 (Port P1 I/O MUX control register)	
Table 11.	MSC_IOMXP2 (Port P2 I/O MUX control register)	
Table 12.	MSC_INPP2AUX1 (INPP aux register)	
Table 13.	Internal memory map	
Table 14.	General purpose I/O GPIO0 register map	
Table 15.	General purpose I/O GPIO0 register map	
Table 16.	Miscellaneous direct register address mode	
Table 17.	Miscellaneous indirect register address mode	
Table 17.	Non-volatile memory register map	
Table 10. Table 19.	RST_SR register map.	
Table 19. Table 20.		
Table 20. Table 21.	Clock controller register map	
	WWDG timer register map	
Table 22.	IWDG timer register map	
Table 23.	AWU timer register map	
Table 24.	I ² C register map	
Table 25.	UART register map	
Table 26.	System timer register map	
Table 27.	Auxiliary timer register map	
Table 28.	Basic timer0 register map	
Table 29.	Basic timer1 register map	
Table 30.	DALI register map	
Table 31.	DALI filter register map	
Table 32.	ADC register map and reset value	. 60
Table 33.	SMED register map	
Table 34.	CPU register map	. 62
Table 35.	CFG_GCR register map	
Table 36.	Interrupt software priority register map	. 63
Table 37.	SWIM register map	. 63
Table 38.	Interrupt vector exception	. 64
Table 39.	Option byte register overview - STNRG388A	
Table 40.	Option byte register overview - STNRG328A	. 67
Table 41.	Option byte register overview - STNRG288A	
Table 42.	ROP (memory read-out protection register)	
Table 43.	UBC (UBC user boot code register)	
Table 44.	nUBC (UBC user boot code register protection).	
Table 45.	GENCFG (general configuration register)	
Table 46.	nGENCFG (general configuration register protection)	
Table 47.	MISCUOPT (miscellaneous configuration register)	
Table 48.	nMISCUOPT (miscellaneous configuration register protection)	

Table 49.	CLKCTL (CKC configuration register)	
Table 50.	nCLKCTL (CKC configuration register protection)	. 75
Table 51.	HSESTAB (HSE clock stabilization register)	. 75
Table 52.	nHSESTAB (HSE clock stabilization register protection)	. 76
Table 53.	ENHFEAT (EXP features configuration register)	. 76
Table 54.	nENHFEAT (EXP features configuration protection)	. 77
Table 55.	WAITSTATE (Flash wait state register)	. 77
Table 56.	nWAITSTATE (Flash wait state protection)	. 78
Table 57.	AFR_IOMXP0 (alternative Port0 configuration register)	. 78
Table 58.	nAFR_IOMXP0 (alternative Port0 configuration register protection)	79
Table 59.	AFR_IOMXP1 (alternative Port1 configuration register)	
Table 60.	nAFR_IOMXP1 (alternative Port1 configuration register protection)	
Table 61.	AFR_IOMXP2 (alternative Port2 configuration register).	
Table 62.	nAFR_IOMXP2 (alternative Port2 configuration register protection)	
Table 63.	MSC_OPT0 (miscellaneous configuration reg0).	
Table 64.	nMSC_OPT0 (miscellaneous configuration reg0 protection)	
Table 65.	OPTBL (option byte bootloader).	
Table 66.	nOPTBL (option byte boot loader protection)	
Table 67.	Unique ID register overview	
Table 68.	Dev ID register overview.	
Table 69.	Device revision model overview	
Table 70.	Voltage characteristics	
Table 71.	Current characteristics	
Table 72.	Thermal characteristics.	
Table 73.	General operating conditions	
Table 74.	Operating conditions at power-up/power-down	
Table 75.	Supply base current consumption at $V_{DD}/V_{DDA} = 3.3/5 V$	
Table 76.	Supply low power consumption at $V_{DD}/V_{DDA} = 3.3/5$ V	02
Table 70.	Peripheral supply current consumption at $V_{DD}/V_{DDA} = 3.3 V$	
Table 78.	Peripheral supply current consumption at $V_{DD}/V_{DDA} = 5.5$ V	06
Table 70.	Wake-up times	
Table 79.	HSE user external clock characteristics	
Table 80.	HSE crystal/ceramic resonator oscillator	
	HSE crystal/ceramic resolution oscillator	
Table 82.	LSI RC oscillator	
Table 83.		
Table 84.	PLL internal source clock	
Table 85.	Flash program memory/data E ² PROM memory	
Table 86.	Voltage DC characteristics	
Table 87.	Current DC characteristics	
Table 88.	Operating frequency characteristics	
Table 89.	NRST pin characteristics	
Table 90.	I ² C interface characteristics	
Table 91.	ADC characteristics	
Table 92.	ADC accuracy characteristics at V_{DD}/V_{DDA} 3.3 V	115
Table 93.	ADC accuracy characteristics at V _{DD} /V _{DDA} 5 V	
Table 94.	Analog comparator characteristics	
Table 95.	Analog comparator hysteresis at V _{DD} /V _{DDA} 3.3 V	119
Table 96.	Analog comparator hysteresis at V _{DD} /V _{DDA} 5 V	
Table 97.	DAC characteristics	
Table 98.	ESD absolute maximum ratings	121
Table 99.	Electrical sensitivity.	
Table 100.	Package thermal characteristics	122

Table 101.	TSSOP38 package mechanical data	124
Table 102.	VFQFPN32 package mechanical data	126
Table 103.	TSSOP28 package mechanical data	128
Table 104.	Ordering information	129
Table 105.	Document revision history	130

List of figures

Figure 1.	STNRG internal design
Figure 2.	Internal block diagram
Figure 3.	Coupled SMED overview
Figure 4.	SMED subsystem overview
Figure 5.	Flash and E ² PROM internal memory organizations
Figure 6.	STNRG388A - TSSOP38 pinout
Figure 7.	STNRG328A - VFQFPN32 pinout
Figure 8.	STNRG288A - TSSOP28 pinout
Figure 9.	Port P0 I/O functional multiplexing scheme
Figure 10.	Port P1 I/O multiplexing scheme
Figure 11.	Supply current measurement conditions
Figure 12.	Pin loading conditions
Figure 13.	Pin input voltage
Figure 14.	External capacitor C _{VOUT}
Figure 15.	PWM current consumption with f_{SMED} = PLL f_{PWM} = 0.5 MHz at V_{DD}/V_{DDA} = 3.3 V 98
Figure 16.	PWM current consumption with $f_{SMED} = PLL f_{PWM} = 0.5 \text{ MHz at } V_{DD}/V_{DDA} = 5 \text{ V} \dots 98$
Figure 17.	PWM current consumption with f_{SMED} = HSI f_{PWM} = 0.5 MHz at V_{DD}/V_{DDA} = 3.3 V 99
Figure 18.	PWM current consumption with f_{SMED} = HSI f_{PWM} = 0.5 MHz at V_{DD}/V_{DDA} = 5 V 99
Figure 19.	HSE external clock source
Figure 20.	HSE oscillator circuit diagram
Figure 21.	V _{OH} standard pad at 3.3 V
Figure 22.	V _{OI} standard pad at 3.3 V
Figure 23.	V _{OH} standard pad at 5 V
Figure 24.	V _{OL} standard pad at 5 V
Figure 25.	V _{OH} fast pad at 3.3 V
Figure 26.	V _{OL} fast pad at 3.3 V
Figure 27.	V _{OH} fast pad at 5 V
Figure 28.	V _{OL} fast pad at 5 V
Figure 29.	V _{OH} high speed pad at 3.3 V
Figure 30.	V _{OL} high speed pad at 3.3 V
Figure 31.	V _{OH} high speed pad at 5 V
Figure 32.	V _{OL} high speed pad at 5 V
Figure 33.	ADC equivalent input circuit
Figure 34.	ADC conversion accuracy
Figure 35.	TSSOP38 package outline
Figure 36.	VFQFPN32 package outline
Figure 37.	TSSOP28 package outline 127

1 Description

STNRG devices are a part of the STNRG family of STMicroelectronics[®] digital devices designed for advanced power conversion applications.

The STNRG improves the design of the successful STLUX[™] family, now integrated in a wide range of LED driver architectures, to support industrial power conversion applications such as PFC+LLC, interleaved LC DC/DC, interleaved PFC for smart power supplies as well as the full bridge for pilot line drivers for electric vehicles.

2 STNRG family features list

All devices of the STNRG family provide the following features:

	Table 2. STNRG fai	Device		
	Feature list	STNRG388A	STNRG328A	STNRG288A
Package		TSSOP38	VFQFPN32	TSSOP28
Pin count		38	32	28
SMED numbers		6	6	6
SMED PWM output	t pins	6	5	4
Fast digital inputs p	ins	6	5 ⁽¹⁾	3 ⁽²⁾
Positive comparato	r input pin	4	4	4 ⁽³⁾
Negative comparate	or input pins	3 ⁽⁴⁾	1	1 ⁽³⁾
Comparator hystere	esis	Yes	Yes	Yes
Internal DACs		4	4	4
ADC input pins		8	6	6
ADC gain		x1 - x4	x1	x1
ADC hardware trigg	ger	Yes	Yes	Yes
GPIO Port 0 pins		6	4	4
	UART peripheral	Yes	Yes	Yes
Communication	I ² C peripheral	Yes	Yes	Yes
	DALI peripheral	Yes	Yes	Yes
HSE function		Yes	Yes	Yes
	System timer	1	1	1
Timers	Auxiliary timer	1	1	1
	Basic timer	2	2	2
Auto-wakeup timer	·	1	1	1
Watabdag	Window watchdog timer	1	1	1
Watchdog	Independent watchdog timer	1	1	1
Flash program mer	nory	32 Kbytes	32 Kbytes	32 Kbytes
EEPROM data mer	nory	1 Kbytes	1 Kbytes	1 Kbytes
RAM		6 Kbytes	6 Kbytes	6 Kbytes
SWIM pin		Mixed	Mixed	Mixed

Table 2. STNRG family features list

1. DIGIN2 - DIGIN3 are connected to the same pin.

2. DIGIN0 - DIGIN1, DIGIN2 - DIGIN3 and DIGIN4 - DIGIN5 are connected to the same pin.

- 3. CPP2 and CPM3are connected to the same pin.
- 4. Some CPM pin is shared with other signals.

3 Introducing SMED

The heart of the STNRG controller family is the SMED (state machine event driven) technology which allows the device to pilot six independently configurable PWM clocks with a maximum resolution of 1.3 ns. A SMED is a powerful autonomous state machine, which is programmed to react to both external and internal events and may evolve without any software intervention. The SMED reaction time can be as low as 10.4 ns, giving the STNRG the ability of operating in time critical applications. The SMEDs offer superior performances when compared to traditional, timer based, PWM generators.

Each SMED is configured via the STNRG internal microcontroller. The integrated controller extends the STNRG reliability and guarantees more than 15 years of both operating lifetime and memory data retention for program and data memory after cycling.

A set of dedicated peripherals complete the STNRG device:

- 4 analog comparators with configurable references and 50 ns max. propagation delay. It is ideal to implement zero current detection algorithms or detect current peaks.
- 10-bit ADC with configurable op amp and 8-channel sequencer.
- 96 MHz PLL for high output signal resolution.

Documentation

This datasheet contains the description of features, pinout, pin assignment, electrical characteristics, mechanical data and ordering information.

- For information on programming, erasing and protection of the internal Flash memory, please refer to the STM8S reference in the programming manual "How to program STM8S and STM8A Flash program memory and data EEPROM" (PM0051).
- For information on the debug and SWIM (single wire interface module) interface refer to the "STM8 SWIM communication protocol and debug module" user manual (UM0470).
- For information on the STM8 core, please refer to the "STM8 CPU programming manual" (PM0044).

4 System architecture

The STNRG device generates and controls PWM signals by means of a state machine, called SMED (state machine event driven). *Figure 1* gives an overview of the internal architecture.

The core of the device is the SMED unit: a hardware state machine driven by system events. The SMED includes 4 states (S0, S1, S2 and S3) available during running operations. A special HOLD state is provided as well. The SMED allows the user to configure, for every state, which system events will trigger a transaction to a new state. During a transaction from one state to the other, the PWM output signal level can be updated.

Once a SMED is configured and running, it becomes an autonomous unit, so no interaction is required since the SMED automatically reacts to system events.

Thanks to the SMED's 96 MHz operating frequency and their automatic dithering function, the PWM maximum resolution is 1.3 ns.

The STNRG family has 6 SMEDs available. Multiple SMEDs can operate independently from each other or they can be grouped together to form a more powerful state machine.

The STNRG also integrates a low power STM8 microcontroller which is used to configure and monitor the SMED activity and to supply external communication such as the UART, I²C or DALI. The STM8 controller has full access to all the STNRG subsystems, including the SMEDs. The STNRG family also features a sequential ADC, which can be configured to continuously sample up to 8 channels.

Section : Block diagram illustrates the overall system block and shows how SMEDs have been implemented in the STNRG architecture.

DocID027799 Rev 2

Block diagram

Figure 2. Internal block diagram

5 **Product overview**

Section 5.1 describes the features implemented in the product device.

5.1 SMED (state machine event driven): configurable PWM generator

The SMED is an advanced programmable PWM generator signal. The SMED (state machine event driven) is a state machine device controllable by both external events (primary I/O signals) and internal events (counter timers), which generate an output signal (PWM) depending on the evolution of the internal state machine.

The PWM signal generated by the SMED is therefore shaped by external events and not only by a simple timer. This mechanism allows to generate controlled high frequency PWM signals.

The SMED is also autonomous: once it has been configured by the STNRG internal controller, the SMED can operate without any software interaction.

The STNRG family provides 6 SMED units. Multiple SMEDs can operate independently from each other or they can be grouped together to form a more powerful state machine.

The main features of a SMED are described here below:

- Configurable state machine generating a PWM signal
- More than 10.4 ns PWM native resolution
- Up to 1.3 ns PWM resolution when using SMED dithering
- 6 states available in each SMED: IDLE, S0, S1, S2, S3 plus a special HOLD state
- Transactions triggered by synchronous and asynchronous external events or an internal timer
- Each transaction can generate an interrupt
- · Fifteen registers available to configure the state machine behavior
- Four 16-bit configurable time registers, one for each running state (T0, T1, T2, T3)
- Internal resources accessible through the processor interface
- Eight interrupt request lines
- Configurable ADC HW trigger request
- PWM pseudo open drain features configurable through GPIO1 registers

5.1.1 SMED coupling schemes

The SMED coupling extends the capability of the single SMED, preserving the independence of each "Finite State Machine" (FSM) programmed state evolution. The coupling scheme allows the SMED pulse signals to be interleaved on their own PWM or on a merged single PWM output. The STNRG supports the following coupled configuration schemes:

- Single SMED configuration
- Synchronous coupled SMED
- Asynchronous coupled SMED
- Synchronous two coupled SMEDs
- Asynchronous two coupled SMEDs
- External controlled SMED

The SMED units may be configured in different coupled schemes through the SMDx_GLBCONF and SMDx_DRVOUT bit fields of MSC_SMEDCFGxy registers.

An outline of the SMED subsystem is shown in Figure 3.

1. The PWM4 and PWM5 output pins are not present on all STNRG devices.

5.1.2 Connection matrix

The connection matrix extends the input connectivity of each SMED unit so that a SMED can receive events from a wide range of sources. Through the matrix, it's possible to connect the SMED inputs to various signal families such as digital inputs, comparator output signals, SW events, and three PWM internal feedback signals as shown in *Figure 4*.

The list of the available event sources is the following:

- DIGIN [5:0] digital input lines
- CPM [3:0] analog comparator outputs
- PWM [5:0] output signals of SMEDs (only PWM 0, 1 and 5 are accessible)
- SW [5:0] software events

Figure 4 shows the connection matrix and signal interconnections as they are implemented in the STNRG family.

Figure 4. SMED subsystem overview

1. The CPP2 and CMP3 inputs are connected together in some STNRG devices.

Connection matrix interconnection

Every SMED unit has three input selection lines, one for each In_Sig input, configurable via the MSC_CBOXS (5:0) register. The selection lines choose the interconnection between one of possible four connection matrix signals for each SMED input event In_Sig (Y).

Table 3 shows the layout of the connection matrix interconnection signals as implemented in the STNRG family.

Conb_s(x)_(y)(z)						
SMED number	SMED number SMED input SMED input signal selection (z)					
(x)	(y)	00	01	10	11	
	0	CP0	DIG0	DIG2	DIG5	
0	1	CP1	DIG0	DIG3	CP3	
	2	CP2	DIG1	DIG4	SW0	
	0	CP1	DIG1	DIG3	DIG0	
1	1	CP2	DIG1	DIG4	CP3	
	2	CP0	DIG2	DIG5	SW1	
	0	CP2	DIG2	DIG4	DIG1	
2	1	CP0	DIG2	DIG5	PWM0	
	2	CP1	DIG3	DIG0	SW2	
	0	CP0	DIG3	DIG5	DIG2	
3	1	CP1	DIG3	DIG0	PWM1	
	2	CP2	DIG4	DIG1	SW3	
	0	CP1	DIG4	DIG0	DIG3	
4	1	CP2	DIG4	DIG1	PWM5	
	2	CP0	DIG5	DIG2	SW4	
	0	CP2	DIG5	DIG1	DIG4	
5	1	CP0	DIG5	DIG2	CP3	
	2	CP1	DIG0	DIG3	SW5	

	Table 3. Connecti	on matrix inte	rconnection
--	-------------------	----------------	-------------

Connection matrix legend:

- X represents the SMED [5:0] number
- Y represents the SMED input signal number (In_Sig [2:0])
- Z represents the In_Sig (Y) selection signal

Note:

Each SMED input has independent connection matrix selection signals. The DIG0 and DIG1 signal are interconnected together, the pin DIGIN [1_0] on the STNRG288A.

The DIG2 and DIG3 signals are interconnected together, the pin DIGIN [3_2] on the STNRG328A and STNRG288A.

DocID027799 Rev 2

The DIG4 and DIG5 signal are interconnected together, the pin DIGIN [5_4] on the STNRG288A.

5.2 Internal controller (CPU)

The STNRG family integrates a programmable STM8 controller acting as a device supervisor. The STM8 is a modern CISC core and has been designed for code efficiency and performance. It contains 21 internal registers (six of them directly addressable in each execution context), 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

5.2.1 Architecture and registers

- Harvard architecture with 3-stage pipeline
- 32-bit wide program memory bus with single cycle fetching for most instructions
- X and Y 16-bit index registers, enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter with 16 Mbyte linear memory space
- 16-bit stack pointer with access to a 64-Kbyte stack
- 8-bit condition code register with seven condition flags updated with the results of last executed instruction

5.2.2 Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located in the entire address space
- Stack pointer relative addressing mode for efficient implementation of local variables and parameter passing

5.2.3 Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

5.2.4 Single wire interface module (SWIM)

The single wire interface module (SWIM), together with the integrated debug module (DM), allows non-intrusive, real-time in-circuit debugging and fast memory programming. The interface can be activated in all device operation modes and can be connected to a running device (hot plugging). The maximum data transmission speed is 145 byte/ms.

The SWIM pin is a multifunction signal. For further details refer to *Table 7: Port P1 I/O multiplexing signal* in *Section 7.3 on page 40*.

DocID027799 Rev 2

5.2.5 Debug module

The non-intrusive debugging module is fully controllable through the external target emulator. Besides memory and peripheral operation, the CPU operation can also be monitored in real-time by means of shadow registers.

- R/W of RAM and peripheral registers in real-time
- R/W for all resources when the application is stopped
- Breakpoints on all program-memory instructions (software breakpoints), except for the interrupt vector table
- Two advanced breakpoints and 23 predefined breakpoint configurations

5.3 Basic peripherals

Section 5.3.1 and Section 5.3.2 describe the basic peripherals accessed by the internal CPU controller.

5.3.1 Vectored interrupt controller

- Nested interrupts with three software priority levels
- 21 interrupt vectors with hardware priority
- Two vectors for 12 external maskable or un-maskable interrupt request lines
- Trap and reset interrupts

5.3.2 Timers

The STNRG family provides several timers which are used by software and do not interact directly with the SMED and the PWM generation.

System timers

The system timer consists of a 16-bit autoreload counter driven by a programmable prescaled clock and operating in one shoot or free running operating mode. The timer is used to provide the IC time base system clock, with an interrupt generation on timer overflow events.

Basic timers

The IC device includes two independent 6-bit timers programmable through the miscellaneous indirect register area. The time base frequency is configurable with different source clocks.

The timers have the following functionalities:

- Free running mode
- Timer prescaler 8-bits
- Counter register 6-bits
- Programmable time base clock (HSI, HSE, LSI, PLL)
- Interrupt timer capability:
 - Vectored interrupt
 - Interrupt IRQ/NMI or polling mode

Auxiliary timer

The auxiliary timer is a light timer with elementary functionality. The time base frequency is provided by the CCO clock logic (configurable with a different source clock and prescale division factors), while the interrupt functionality is supplied by an interrupt edge detection logic similarly to the solution adopted for the Port P0/P2.

The timer has the following main features:

- Free running mode
- Up counter
- Timer prescaler 8-bit
- Interrupt timer capability:
 - Vectored interrupt
 - Interrupt IRQ/NMI or Polling mode
- Timer pulse configurable as a clock output signal via the CCO primary pin

Thanks to the great configurability of the CCO frequency, the timer can cover a wide range of interval time to fit better the target application requirements.

Auto-wakeup timer

The AWU timer is used to cyclically wake-up the IC device from the active halt state. The AWU frequency time base f_{AWU} can be selected between the following clock sources: LSI (153.6 kHz) and the external clock HSE scaled down to 128 kHz clock.

By default the f_{AWU} clock is provided by the LSI internal source clock.

Watchdog timers

The watchdog system is based on two independent timers providing a high level of robustness to the applications. The watchdog timer activity is controlled by the application program or by suitable option bytes. Once the watchdog is activated, it cannot be disabled by the user program without going through reset.

Window watchdog timer

The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which causes the application program to break the normal operating sequence.

The window function can be used to adjust the watchdog intervention period in order to match the application timing perfectly. The application software must refresh the counter before timeout and during a limited time window. If the counter is refreshed outside this time window, a reset is issued.

Independent watchdog timer

The independent watchdog peripheral can be used to solve malfunctions due to hardware or software failures.

It is clocked by the 153.6 kHz LSI internal RC clock source. By properly setting the hardware watchdog feature associated option bits, the watchdog is automatically enabled at poweron, and generates a reset unless the key register is written by software before the counter reaches the end of the count.

5.3.3 Flash program and data E²PROM

Embedded Flash and E^2PROM with the memory ECC code correction and protection mechanism preventing embedded program hacking.

- 32 Kbyte of single voltage program Flash memory
- 1 Kbyte true (not emulated) data E²PROM
- Read while write: writing in the data memory is possible while executing code program memory
- The device setup is stored in a user option area in the non-volatile memory.

5.3.4 Architecture

Figure 5. Flash and E²PROM internal memory organizations

- The memory is organized in blocks of 128 bytes each
- Read granularity: 1 word = 4 bytes
- Write/erase granularity: 1 word (4 bytes) or 1 block (128 bytes) in parallel
- Writing, erasing, word and block management is handled automatically by the memory interface.

5.3.5 Write protection (WP)

Write protection in application mode is intended to avoid unintentional overwriting of the memory. The write protection can be removed temporarily by executing a specific sequence in the user software.

5.3.6 Protection of user boot code (UBC)

In STNRG devices a memory area of 32 Kbyte can be protected from overwriting at a user option level. In addition to the standard write protection, the UBC protection can be modified by the embedded program or via debug interface when the ROP protection is enabled.

DocID027799 Rev 2

The UBC memory area contains the reset and interrupt vectors and its size can be adjusted in increments of 512 bytes by programming the UBC and nUBC option bytes.

Note: If users choose to update the boot code in the application programming (IAP), this has to be protected so to prevent unwanted modification.

5.3.7 Read-out protection (ROP)

The STNRG family provides a read-out protection of the code and data memory which can be activated by an option byte setting.

The read-out protection prevents reading and writing program memory, data memory and option bytes via the debug module and SWIM interface. This protection is active in all device operation modes. Any attempt to remove the protection by overwriting the ROP option byte triggers a global erase of the program and data memory contents.

5.4 Clock controller

The clock controller distributes the system clock provided by different oscillators to the core and the peripherals. It also manages clock gating for low- power modes and ensures clock robustness.

The main clock controller features are:

- Clock sources
- Internal 16 MHz and 153.6 kHz RC oscillators
- External source clock:
 - Crystal/resonator oscillator
 - External clock input
- Internal PLL at 96 MHz (not used as the f_{MASTER} source clock)
- Reset: after the reset the microcontroller restarts by default with the HSI internal clock scaled at 2 MHz (16 MHz/8). The clock source and speed can be changed by the application program as soon as the code execution starts.
- Safe clock switching: clock sources can be changed safely on the fly in run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- Clock management: to reduce power consumption, the clock controller can stop the clock to the core or individual peripherals.
- Wakeup: In in case the device wakes up from low- power modes, the internal RC oscillator (16 MHz/8) is used for a quick startup. After a stabilization time, the device brings back the clock source that was selected before Halt mode was entered.
- Clock security system (CSS): the CSS permits monitoring of external clock sources and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.
- Configurable main clock output (CCO): this feature permits to output an internal clock source signal for application usage.

5.4.1 Internal 16 MHz RC oscillator (HSI)

The high speed internal (HSI) clock is the default master clock line, generated by an internal RC oscillator and with nominal frequency of 16 MHz. It has the following major features:

- RC architecture
- Glitch-free oscillation
- 3-bit user calibration circuit.

5.4.2 Internal 153.6 kHz RC oscillator (LSI)

The low speed internal (LSI) clock is a low speed clock line provided by an internal RC circuit. It drives both the independent watchdog (IWDG) circuit and the auto-wakeup unit (AWU). It can also be used as a low power clock line for the master clock f_{MASTER} .

5.4.3 Internal 96 MHz PLL

The PLL provides a high frequency 96 MHz clock used to generate high frequency and accurate PWM waveforms. The input reference clock must be 16 MHz and may be sourced either by the internal HSI signal or by the external HSE auxiliary input crystal oscillator line.

The internal PLL prescaled clock cannot be selected as f_{MASTER}.

Note: When the application requires a PWM signal with a custom defined long term stability it is suggested to use an external clock source connected to the HSE auxiliary clock line as the PLL input reference clock. In this case, the external clock source accuracy determines the PWM output stability.

5.4.4 External clock input/crystal oscillator (HSE)

The high speed external clock (HSE) allows the connection of an external clock generated, for example, by a highly accurate crystal oscillator. The HSE is interconnected with the f_{MASTER} clock line and to several peripherals. It allows users to provide a custom clock characterized by a high level of precision and stability to meet the application requirements. The HSE supports two possible external clock sources with a maximum of 24 MHz:

- Crystal/ceramic resonator interconnected with the HseOscin/HseOscout signals
- Direct drive clock interconnected with the HseOscin signal

The HseOscin and HseOscout signals are multifunction pins configurable through the I/O multiplex mechanism; for further information refer to Section 6 on page 30.

Note: When the HSE is configured as the f_{MASTER} source clock, the HSE input frequency cannot be higher than 16 MHz.

When the HSE is the PLL input reference clock, then the HSE input frequency must be equal to 16 MHz.

If the HSE is the reference for the SMED or the ADC logic, the input frequency can be configured up to 24 MHz.

5.5 **Power management**

For efficient power management, the application can be put in one of four different lowpower modes. Users can configure each mode to obtain the best compromise between the lowest power consumption, the fastest startup time and available wakeup sources.

- **Wait mode:** in this mode, the CPU is stopped, but peripherals are kept running. The wakeup is triggered by an internal or external interrupt or reset.
- Active- halt mode with regulator on: in this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto-wakeup unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in the active-halt mode with the regulator off, but the wakeup time is faster. The wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
- Active- halt mode with regulator off: this mode is the same as active- halt with the regulator on, except that the main voltage regulator is powered off, so the wakeup time is slower.
- Halt mode: in this mode the microcontroller uses the least power. The CPU and peripheral clocks are stopped, while the main voltage regulator is switched in power-off. Wakeup is triggered by an external event or reset.

In all modes the CPU and peripherals remain permanently powered on, the system clock is applied only to selected modules. The RAM content is preserved and the brownout reset circuit remains enabled.

5.6 Communication interfaces

5.6.1 Universal asynchronous receiver/transmitter (UART)

UART is the asynchronous receiver/transmitter communication interface.

- SW flow control operating mode
- Full duplex, asynchronous communications
- High precision baud rate generator system
- Common programmable transmit and receive baud rates up to f_{MASTER}/16
- Programmable data word length (8 or 9-bit)
- Configurable stop bit support for 1 or 2 stop bit
- Configurable parity control
- Separate enable bits for transmitter and receiver
- Interrupt sources:
 - Transmit events
 - Receive events
 - Error detection flags
- 2 interrupt vectors:
 - Transmitter interrupt
 - Receiver interrupt
- Reduced power consumption mode
- Wakeup from mute mode (by idle line detection or address mark detection)
- 2 receiver wakeup modes:
 - Address bit (MSB)
 - Idle line.

5.6.2 Inter-integrated circuit interface (I²C)

The I²C (inter-integrated circuit) bus interface serves as an interface between the microcontroller and the serial I²C bus. It provides a multi-master capability, and controls all I²C bus-specific sequencing, protocol, arbitration and timing. It supports standard and fast speed modes.

- Parallel-bus/I²C protocol converter
- Multi-master capability: the same interface can act as master or slave
- I²C master features:
 - Clock generation
 - Start and stop generation
- I²C slave features:
 - Programmable I²C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
- Supports different communication speeds:
 - Standard speed (up to 100 kHz)
 - Fast speed (up to 400 kHz)

- Status flags:
 - Transmitter/receiver mode flag
 - End-of-byte transmission flag
 - I²C busy flag
- Error flags:
 - Arbitration lost condition for master mode
 - Acknowledgment failure after address/ data transmission
 - Detection of misplaced start or stop condition
 - Overrun/underrun if clock stretching is disabled
- Interrupt sources:
 - Communication interrupt
 - Error condition interrupt
 - Wakeup from Halt interrupt
- Wakeup capability:
 - MCU wakes up from low power mode on address detection in slave mode.

5.6.3 Digital addressable lighting interface (DALI)

The DALI (digital addressable lighting interface), standardized as IEC 62386, is the new interface for lighting control solutions defined by the lighting industry.

The DALI protocol is generally implemented in a DALI communication module (DCM): a serial communication circuit designed for controllable electronic ballasts. The "ballast" is a device or circuit used to provide the required starting voltage and operating current for the LED, fluorescent, mercury or other electronic-discharge lamps.

The STNRG388A DALI interface has the following characteristics:

- Speed line: 1.2, 2.4 and 4.8 kHz transmission rate ±10%
- Forward message length: 16, 17, 18 or 24 bit
- Backward message length: 8 bit
- Bidirectional communications
- Monitor receiver line timeout 500 ms ± 10%
- Reversible polarity of DALI_rx, DALI_tx signal line
- Configurable noise rejection filter on DALI_rx input line
- Maskable interrupt request line
- DALI peripheral clock is slowed down to 153.6 kHz in low speed operating mode

DALI noise rejection filter

The DALI interface includes a noise rejection filter interconnected on the RX channel capable to remove any bounce, glitch or spurious pulse from the RX line. The filter can be configured via three registers:

- MSC_DALICKSEL: selects the source clock of filter timing
- MSC_DALICKDIV: configures the clock prescaler value
- MSC_DALICONF: configures the filter count and operating mode.

Further information about the noise rejection filter description is found in the STLUX and STNRG family reference manual (RM0380).

5.7 Analog-to-digital converter (ADC)

The STNRG family includes a 10-bit successive approximation ADC with 8 multiplexed input channels. The analog input signal can be amplified before conversion by a selectable gain of 1 or $4^{(a)}$ times. The analog-to-digital converter can operate either in single or in continuous/circular modes. The ADC unit has the following main features:

- 8/6 ADC input channel^(b)
- 10-bit resolution
- Single and continuous conversion mode
- Independent or fixed channel gain value x1 or x4 to extend dynamic range and resolution to 12-bit equivalent^(a)
- Interrupt events:
 - EOC interrupt asserted on end of conversion cycle
 - EOS interrupt asserted on end of conversion sequences
 - SEQ_FULL_EN interrupt assert on sequencer buffer full
- ADC input voltage range dependent on selected gain value^(a)
- Selectable conversion data alignment
- Individual registers for up to 8 successive conversions.
- Conversion start from SW command or HW trigger event
- Auto-reload conversion command parameters
- Auto-flush after single conversion mode
- Auto-flush after conversion mode program (single/circular)
- Abort/flush sequence improvement

5.8 Analog comparators

The STNRG family includes four independent fast analog comparator units (COMP3-0). Each comparator has an internal reference voltage. The COMP3 can be also configured to use an external reference voltage connected to the CPM3 input pin. On the STNRG388A each comparator has also the external reference voltage line pin.

b. The numbers of ADC input channels depends on the STNRG device.

a. The gain x 4 is available only on the STNRG388A type.

Each comparator internal reference voltage is generated by a dedicated internal-only 4-bit DAC unit. The main characteristics of the analog comparator unit (ACU) are the following:

- Each comparator has an internally/external configurable reference
- Internal reference voltages configurable in 16 steps with the 83 mV voltage gain from 0 V (VSSA) to 1.24 V (voltage reference)
- Two stage comparator architecture is used to reach a high gain
- Comparator output stage value accessible from processor interface
- Continuous fast cycle comparison time
- Configurable hysteresis voltage levels
- Configurable ADC HW trigger request
- Comparator outputs interrupt capability.

6 Pinout and pin description

6.1 Pinout

U		
GPIO1[0]/PWM0	1	28 ADCIN[0]
DIGIN10/CCO_Clk	2	27 ADCIN[1]
GPIO1[1]/PWM1	3	26 ADCIN[2]
GPIO1[2]/PWM2	4	25 ADCIN[3]
DIGIN32	5	24 ADCIN[4]
SWIM/DGIN1/GPIO0[6]	6	23 ADCIN[5]
NRST	7	22 VSSA
VDD	8	21 VDDA
VSS	9	20 CPP[0]
VOUT	10	19 CPP[1]
GPIO0[4]/Dali_TX/I2C_sda/Uart_TX		18 CPP2_CPM3
GPIO0[5]/Dali_RX/I2C_scl/Uart_RX	12	17 CPP[3]
DIGIN54	13	16 GPIO0[3]/I2C_sda/HseOscin/Uart_RX
GPIO1[3]/PWM3	14	15 GPIO0[2]/I2C_sda/HseOscout/Uart_TX

Figure 8. STNRG288A - TSSOP28 pinout

6.2 Pin description

Pin number		ти			A.1.		Altornoto	
TSSOP 38	VFQFPN 32	TSSOP 28	Ty- pe	Pin name	Main function	Alternate function 1	Alternate function 2	Alternate function 3
1	21	1	I/O	GPIO1 [0]/PWM [0]	SMED PWM channel 0	General purpose I/O 10	-	-
2	22	2	I/O	DIGIN[0]/ CCO_clk	Digital input 0	Configurable clock output signal (CCO)	-	-
3	23	-	Ι	DIGIN[1]/ GPIO1 [6]	Digital input 1	General purpose I/O 16 ⁽¹⁾	-	-
4	24	3	I/O	GPIO1[1]/PWM[1]	SMED PWM channel 1	General purpose I/O 11	-	-
5	25	4	I/O	GPIO1 [2]/ PWM [2]	SMED PWM channel 2	General purpose I/O 12	-	-
6	26 ⁽²⁾	5 ⁽²⁾	Ι	DIGIN [2]	Digital input 2	-	-	-
7	20\-/	5(-)	Ι	DIGIN [3]	Digital input 3	-	-	-
8	-	-	I/O	GPIO1 [5]/ PWM[5]	SMED PWM channel 5	General purpose I/O 15	-	-
9	27	6	I/O	SWIM/GPIO0 [6]/ DIGIN [1] ⁽³⁾	SWIM data interface	General purpose I/O 06	Digital input 1 (3)	-
10	28	7	I/O	NRST	Reset	-	-	-
11	29	8	PS	VDD	Digital and I/O power supply	-	-	-
12	30	9	PS	VSS	Digital and I/O ground	-	-	-
13	31	10	PS	VOUT	1.8 V regulator capacitor	-	-	-
14	32	11	I/O	GPIO0[4]/Dali_TX/ I2C_sda/Uart_TX	General purpose I/O 04	DALI data transmit	I ² C data	UART data transmit
15	1	12	I/O	GPIO0[5]/Dali_RX/ I2C_scl/Uart_RX	General purpose I/O 05	DALI data receive	I ² C clock	UART data receive
16	2	-	I/O	GPIO1 [4]/PWM [4]	SMED PWM channel 4	General purpose I/O 14	-	-
17	3	-	I/O	DIGIN[4]/I2C_sda/ GPIO1[6]	Digital input 4	I ² C data	General purpose I/O 16	-
18	4	-	I/O	DIGIN[5]/I2C_scl/ GPIO1[7]	Digital input 5	I ² C clock	General purpose I/O 17	-
-	-	13	I/O	DIGIN54	Digital input 5,4	-	-	-

Table 4. Pin description

Pin number								
TSSOP 38	VFQFPN 32	TSSOP 28	Ty- pe	Pin name	Main function	Alternate function 1	Alternate function 2	Alternate function 3
19	5	14	I/O	GPIO1 [3]/PWM [3]	SMED PWM channel 3	General purpose I/O 13	-	-
20	6	15	I/O	GPIO0 [2]/I2C_sda/ HseOscout/Uart_TX	General purpose I/O 02	l ² C data	Output crystal oscillator signal	UART data transmit
21	7	16	I/O	GPIO0[3]/I2C_scl/ HseOscin/Uart_RX	General purpose I/O 03	I ² C clock	Input crystal oscillator signal /input clock signal	UART data receive
22	-	-	I/O	GPIO0[0]/Uart_TX/ I2C_sda/CPM0	General purpose I/O 00	UART data transmit	I ² C data	Negative analog comparator input 0
23	-	-	I/O	GPIO0[1]/Uart_RX/ I2C_scl/CPM1	General purpose I/O 01	UART data receive	I ² C clock	Negative analog comparator input 1
24	8	17	I	CPP [3]	Positive analog comparator input 3	-	-	-
25	9	-	I	CPP [2]	Positive analog comparator input 2	-	-	-
26	-	-	I	CPM32	Negative analog comparator input 3, 2	-	-	-
-	10	-	I	СРМЗ	Negative analog comparator input 3	-	-	-
-	-	18	I	CPP2_CPM3	Positive analog comparator input 2 - Negative analog comparator input 3	-	-	-
27	11	19	Ι	CPP [1]	Positive analog comparator input 1	-	-	-
28	12	20	I	CPP [0]	Positive analog comparator input 0	-	-	-

Table 4. Pin description (continued)

Pin number		Tre			Alternate	Alternete		
TSSOP 38	VFQFPN 32	TSSOP 28	Ty- pe	Pin name	Main function	Alternate function 1	Alternate function 2	Alternate function 3
29	13	21	PS	VDDA	Analog power supply	-	-	-
30	14	22	PS	VSSA	Analog ground	-	-	-
31	-	-	Ι	ADCIN [7]	Analog input 7	-	-	-
32	-	-	I	ADCIN [6]	Analog input 6	-	-	-
33	15	23	Ι	ADCIN [5]	Analog input 5	-	-	-
34	16	24	Ι	ADCIN [4]	Analog input 4	-	-	-
35	17	25	I	ADCIN [3]	Analog input 3	-	-	-
36	18	26	Ι	ADCIN [2]	Analog input 2	-	-	-
37	19	27	I	ADCIN [1]	Analog input 1	-	-	-
38	20	28	Ι	ADCIN [0]	Analog input 0	-	-	-

Table 4. Pin description (continued)

1. Not available on the STNRG288A.

2. The DIGIN3 and DGIN2 are connected together.

3. Available only on the STNRG288A.

6.3 Input/output specifications

The STNRG family includes three different I/O types:

- Normal I/Os configurable either at 2 or 10 MHz maximum frequency
- Fast I/O operating up to 12 MHz.
- High speed I/O operating up to 32 MHz

The STNRG I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A; further details are available in *Section 12 on page 86*.

7 I/O multifunction signal configuration

Several I/Os have multiple functionalities selectable through the configuration mechanism described from *Section 7.1* to *Section 7.5 on page 43*. The STNRG I/Os are grouped into four different configurable ports: P0, P1, P2 and P3.

7.1 Multifunction configuration policy

STNRG devices support either a cold or warm multifunction signal configuration policy according to the content of the EN_COLD_CFG bit field, a part of the GENCFG option byte register.

When the EN_COLD_CFG bit is set, the cold configuration is selected and the multifunction signals are configured according to the values stored in the option bytes; otherwise when the EN_COLD_CFG bit is cleared (default case), the warm configuration mode is chosen and the multifunction pin functionality is configured through the miscellaneous registers.

The configuration options and the proper configuration registers are detailed in Table 5.

EN_COLD_CFG	Configuration policy	Multifunction configuration registers				
1	Cold	AFR_IOMXP0, AFR_IOMXP1 and AFR_IOMXP2				
0 (default)	Warm	MSC_IOMXP0, MSC_IOMXP1 and MSC_IOMXP2				

Table 5. Multifunction configuration registers

The warm configuration is volatile, thus not maintained after a device reset.

7.2 Port P0 I/O multifunction configuration signal

The Port P0 multiplexes several input/output functionalities, increasing the device flexibility. The P0 port pins can be independently assigned to general purpose I/Os or to internal peripherals. All communication peripherals and the external oscillator are hosted by the Port P0 pins.

In order to avoid electrical conflicts on the user application board, the P0 signals are configured at reset as GPIO0 inputs without pull-up resistors. Once reset is released, the firmware application must initialize the inputs with the proper configuration according to the application needs.

7.2.1 Alternate function P0 configuration signals

The multifunction pins can be configured via one of the following two registers, depending on the overall configuration policy (warm/cold):

- Cold configuration: AFR_IOMXP0 option byte registers (refer to Section 10 on page 65. After the reset the P0 signals are configured in line with AFR_IOMXP0 contents.
- Warm configuration: MSC_IOMXP0 miscellaneous register (refer to Section 7.5 on page 43). After the reset, the P0 signals are configured as GPIO input lines with the pull-up disabled.

Table 6 summarizes the Port P0 configuration scheme. Both registers MSC_IOMXP0 and AFR_IOMXP0 use the same register fields Sel_p054, Sel_p032 and Sel_p010 which respectively control the bits [5, 4], [3, 2] and [1, 0] of the Port P0.

	Port P0 multifunction configuration signal						
Dort nino	Multifuno	tion of anot	MUX	SEL			
Port pins	Multifunc	tion signal	Selection fields	Value (binary)			
	GPIO0 [1]	GPIO0 [0]		00 ⁽³⁾ , ⁽⁴⁾			
	CPM1 ⁽³⁾	CPM0 ⁽⁴⁾		00(*), (*)			
P0 [1,0] ⁽²⁾	UART_rx	UART_tx	Sel_p010	01			
	I2C_scl	I2C_sda		10			
	RFU reserv	ed encoding		11			
	GPIO0 [3]	GPIO0 [2]		00			
P0 [3, 2]	I2C_scl	I2C_sda	Sol 2022	01			
P0 [3, 2]	HseOscin	HseOscout	– Sel_p032	10			
	UART_rx	UART_tx		11			
	GPIO0 [5]	GPIO0 [4]		00			
	DALI_rx	DALI_tx	Sol p054	01			
P0 [5, 4]	I2C_scl	I2C_sda	– Sel_p054	10			
	UART_rx	UART_tx		11			

1. The Sel_p054, Sel_p032, Sel_p010 are register fields for both registers MSC_IOMXP0 and AFR_IOMXP0. The peripheral conflict (same resources selected on different pins at the same time) has to be prevented by SW configuration.

When the I²C interface is selected either on the GPIO0 [5:4] or on the GPIO0 [3:2] signals the related I/O port speed has to be configured at 10 MHz by programming the GPIO0 internal peripheral.

- 2. Available only on STNRG388A.
- 3. The CPM1 (external COMP1 reference voltage) selection line requires the following configurations: GPIO0 [1] programmed as input Hiz and the bit field DAC1_EN = '0' and CP1_EN_ERef = '1 of MSC_DACCTR (available only on the STNRG388A).
- 4. The CPM0 (external COMP0 reference voltage) selection line requires the following configurations: GPIO0 [0] programmed as input Hiz (input high impedance with pull-up disable) and the bit field DAC0_EN = '0' and CP0_EN_ERef = '1 of MSC_DACCTR (available only on the STNRG388A).

7.2.2 Port P0 diagnostic signals

The primary I/Os can be used to trace the SMED's state evolution. This feature allows the debug of the complex SMED configurations. The trace selection can be enabled or disabled via register MSC_IOMXSMD. The diagnostic signal selection through MSC_IOMXSMD register overrides the functional configuration of MSC_IOMXP0 register.

The Port P0 [5:3] or P0 [2:0] can be configured to output one or two different SMEDs' current states.

The SMEDs FSM state signals (coded on three bits) may be multiplexed either on port bits P0 [5:3] or P0 [2:0]; alternatively two different SMEDs signal states can be traced

simultaneously on the same port bits. The SMED trace configuration is forbidden on the Port P [2:0] when the external comparator reference voltage is programmed on the Port P0 [1, 0].

Port 0 I/O signal availability depends on the STNRG device.

7.2.3 Port P0 I/O functional multiplexing signal

Figure 9 shows an outline view of the Port P0 multifunction multiplexing scheme.

Figure 9. Port P0 I/O functional multiplexing scheme

 Where "A/F(s) in" and "A/F(s) out" signals are defined in Section 5.2 on page 28. Verify pinout availability in device pin table X? The P0 [6] is a multifunction signal configurable through the MSC_IOMXP2 [7] and AFR_IOMXP2 [7] register bits. For further details refer to Section-6.4. The Port P0 [6] signal is controlled by P0_ODR [6] and P0_IDR [6] GPIO0 registers.

On the STNRG328A and STNRG288A device:

• P0_ODR [1:0] bits must be keep clear.

7.2.4 P0 interrupt capability

Port P0 signals may be configured to generate maskable (IRQ) and un-maskable (NMI) interrupts by programming the MSC_CFGP0<n> and the MSC_STSP0 registers (n = index port signal).

The interrupt request may be configured to wake-up the IC device from the WFI (wait for interrupt), AHalt (active Halt) and Halt power saving state.

7.2.5 P0 programmable pull-up and speed feature

The I/O speed and pad pull-up resistance (47 k Ω) of the port P0 may be configured through the GPIO0 internal registers.

The pull-up resistance of the multifunction signal P0 [6] is always enabled.

7.3 Port P1 I/O multifunction configuration signal

The Port P1 I/O multifunction pins, similarly to the Port P0, can be individually configured through the following set of registers based on the selected device configuration policy:

- Cold configuration: AFR_IOMXP1 option byte register (refer to Section 10 on page 65). After reset the P1 signals are configured in line with AFR_IOMXP1 contents.
- Warm configuration: MSC_IOMXP1 miscellaneous register (refer to Section 7.5). After reset the P1 signals are configured as PWM output lines.

Every Port1 I/O can be configured to operate as a PWM output pin or a GPIO. Differently from the port P0s, the pins are configured as PWM output signals by default after reset.

Table 7 summarizes the Port P1 configurations as selected by the register fields Sel_p15 ... Sel_p10 which respectively control the bits [5] ... [0] of the Port P1 (verify resources availability on *Table 4: Pin description on page 34*).

	Port P1 multifunction configuration signal					
Output signal	Multi function signal	MUX selection				
Output signal	Multi- function signal	Selection bits	Value (binary)			
D1 [0]	PWM [0]	Sol 510	1			
P1 [0]	GPIO1 [0]	Sel_p10	0			
D1 [1]	PWM [1]	Sel_p11	1			
P1 [1]	GPIO1 [1]	Sei_p11	0			
D1 [2]	PWM [2]	Sol p12	1			
P1 [2]	GPIO1 [2]	Sel_p12	0			
D1 [2]	PWM [3]	Sel p13	1			
P1 [3]	GPIO1 [3]	Sei_p13	0			
D1 [4]	PWM [4]	Sol p14	1			
P1 [4]	GPIO1 [4]	Sel_p14	0			
D1 [5]	PWM [5]	Sol p15	1			
P1 [5]	GPIO1 [5]	Sel_p15	0			

Table 7. Port P1 I/O multiplexing signal⁽¹⁾

 The Sel_p15...Sel_p10 are common register fields of both registers MSC_IOMXP1 and AFR_IOMXP1. In cold configuration the P1x are configured as defined by the AFR_IOMXP1 option byte. The PWM default polarity level is configured by the register option byte GENCFG. Verify pin out availability in *Table 4: Pin description on page 34*.

7.3.1 Port P1 I/O multiplexing signal

Figure 10 shows an outline view of the port P1 signal multiplexing scheme.

Figure 10. Port P1 I/O multiplexing scheme

 The P1 [5:0] output signals may be read back from the P1_IDR register only when the pins are configured as GPIO out or PWM signals. The PWM internal signal is read- back also by its own SMED through the SMD<n>_FSM_STS register.

The PWM internal signal is read- back also by its own SMED through the SMD<n>_FSM_STS register. P1_ODR [7:6] and P1_IDR [7:6] registers control the GPIO1 [7:6] alternate function signals, for further details refer to Section 7.4. Check device feature availability.

7.3.2 P1 interrupt capability

Port P1 signals may be configured to generate maskable (IRQ) and un-maskable (NMI) interrupts by configuring the MSC_CFGP1<n> and the MSC_STSP1 registers (n = index port signal 4- 0). This functionality is applicable to the bit port P1 [4:0].

The interrupt request may be configured to wake-up the IC device from the WFI (wait for interrupt), AHalt (active Halt) and Halt power saving state.

7.3.3 P1 programmable pull-up feature

The pad pull-up resistances (47 k Ω) of the Port1 may be configured through the GPIO1 internal register.

The PWM output pseudo open drain functionality is controllable by the GPIO1 registers.

7.4 Port P2 I/O multifunction configuration signal

The Port2 I/O multifunction pins, similarly to the Port0 and Port2, can be individually configured through the following set of registers based on the selected device configuration policy:

- Cold configuration: AFR_IOMXP2 option byte registers (refer to Section 10 on page 65. After reset the P2 signals are configured in line with AFR_IOMXP2 contents.
- Warm configuration: MSC_IOMXP2 miscellaneous register (refer to Section 7.5). After reset the P2 signals are configured as DIGIN input lines with pull-up enabled.

Table 8 summarizes the port P2 configurations selected by the register fields Sel_p25 ... Sel_p20 which respectively control the bits [5]... [0] of the port P2. The P2 [0] is configured by the CCOEN bit field of the register CKC_CCOR. The SWIM alternate function signal

(when available) is controlled by the Sel SWIM bit field provided by registers AFR IOMXP2 [7] and MSC_IOMXP2 [7].

	Port P2 multifunction configuration signal						
Output signal	Multi funo	tion signal	MUX	SEL			
Output signal	Multi-lunc	lion signal	Selection bits	Value (binary)			
D2 [0]	DIGI	N [0]	CCOEN	0 ⁽²⁾			
P2 [0]	CC	0		1			
D2 [1]	GPIO1 [6]		Sol D21	0			
P2 [1]	DIGI	N [1]	- Sel_P21	1 ⁽²⁾			
D2 [2]	GPIO0 [7]		Sol D22	0			
P2 [3]	DIGIN [3]		– Sel_P23	1 ⁽²⁾			
	GPIO1 [7]	GPIO1 [6]		00			
	GPIO1 [7]	DIGIN [4]		01			
P2 [5, 4]	I2C_scl	I2C_sda	- Sel_P2 [5, 4]	10			
	DIGIN [5]	DIGIN [4]		11 ⁽²⁾			
	SWIM			X ⁽³⁾			
SWIM	GPIC	0 [6]	Sel_SWIM	0 ⁽⁴⁾			
	DIGI	N1 (3)		1 ⁽⁵⁾			

The Sel_P2 [5, 4, 3, 1] is a common register field of both registers MSC_IOMXP2 and AFR_IOMXP2. The peripheral conflict (same resources selected on different pins at the same time) has to be prevented 1. by SW configuration. After reset by default P2 [3, 1, 0] are configured as DIGIN [3, 1, 0] signals. The option byte AFR_IOMXP2, before user configuration, by default selects the I²C alternative

functionality.

The signal ports P2 [3:1] are exclusively interconnected with DIGIN [3:1] primary pins. When the I²C i/f is selected on DIGIN [5:4] signals the I/O speed is auto-configured at 10 MHz and the internal pull-up functionality is controlled by the MSC_INPP2AUX1 register. After reset by default the P2 [0] is configured as the DIGIN [0] signal. GPIO1 [7:6] signals are controlled by P1_ODR [7:6] and P1_IDR [7:6] GPIO1 registers.

Default configuration after reset if the option byte is at the manufactory value. Verify pin out availability in device pin table X.

3. SWIM pin: SWIM signal function is selected when CFG_GCR [0] = '0'.

- 4. SWIM pin: The GPIO0 [6] signal is selected when both Sel_SWIM = '0' and CFG_GCR [0] = '1'.
- SWIM pin: Available only on the STNRG288A and the P2 [1] (DIGIN1) signal is selected on the SWIM pin when both Sel_SWIM = '1' and CFG_GCR [0] = '1', otherwise it's interconnected with the pin DIGIN10. 5.

7.4.1 P2 ADC hardware trigger

The DIGIN [0, 3] signals may be configured to generate a HW trigger request to start the ADC conversion.

7.4.2 P2 interrupt capability

Port P2 signals may be configured to generate maskable (IRQ) and un-maskable (NMI) interrupts by configuring the MSC_CFGP2<n> and the MSC_STSP2 registers (n = index port signal 0 - 5).

DocID027799 Rev 2

The interrupt functionality is available on the port P2 [5:4] also in case these signals are configured as GPIO1 [7:6].

The interrupt request may be configured to wake-up the IC device from the WFI (wait for interrupt), AHalt (active Halt) and Halt power saving state.

7.4.3 P2 programmable pull-up feature

The pad pull-up resistances (47 k Ω) of Port2 signals are individually controllable by the MSC_INPP2AUX1 register.

7.5 Port P3 analog signal

The port P3 is an analog signal port based on the comparator input signals CPP [3:0]. Differently than the digital ports, the P3 is a single function port with fixed signal assignment.

7.5.1 P3 ADC conversion request

The CMP [0, 3] internal output signals may be configured to generate a HW trigger request to start the ADC conversion.

7.5.2 P3 interrupt capability

The comparator output signals of the port P3 (CMP [3:0]) may be configured to generate maskable interrupts by programming the MSC_CFGP3<n> and the MSC_STSP3 registers (n = index port signal 0-3).

The interrupt request may be configured to wake-up the IC device from the WFI (wait for interrupt), AHalt (active Halt) and Halt power saving state.

7.6 Multifunction port configuration registers

MSC_IOMXP0 (Port P1 I/O MUX control register)

Table 9. MSC_IOMXP0 (Port P1 I/O MUX control register)

	Offset: 0x2A						
			Default va	lue: 0x00			
7	6	5	5 4 3 2 1 0				
F	RFU	Sel_P054 [1:0]		Sel_P0	32 [1:0]	Sel_P	010 [1:0]
	r	r/w r/w r/w				/w	

The Port0 I/O multifunction signal configurations register (for functionality description refer to Section 7.2 on page 37).

Check device feature availability.

Bit 1 - 0:

Sel_P010 [1:0] Port0 [1:0] I/O multiplexing scheme:

00: Port0 [1:0] the bit port may be configured individually as GPIO [1:0] or as CPM [1:0] (comparator [1:0] external reference voltage):

GPIO0 [1:0] signals are controlled by the GPIO0 internal registers. CPM [1, 0]: comparator external reference voltage requires that following configurations:

- GPIO0 [x] configured as input Hiz (where x = 1,0)
- DAC<x>_EN = '0' and CP<x>_EN_ERef = '1 of MSC_DACCTR available only on the STNRG388A register.
- 01: Port0 [1:0] are interconnected to UART_rx and UART_tx signals
- 10: Port0 [1:0] are interconnected to I^2C_scl and I^2C_sda signals
- 11: RFU

Bit 3 - 2:

Sel_P032 [1:0] Port0 [3:2] I/O multiplexing scheme:

- 00: Port0 [3:2] are interconnected to GPIO0 [3:2] signals
- 01: Port0 [3:2] are interconnected to I2C_scl and I2C_sda signals
- 10: Port0 [3:2] are interconnected to HseOscin and HseOscout analog signals
- 11: Port0 [3:2] are interconnected to UART_rx and UART_tx signals

Bit 5 - 4:

Sel_P054 [1:0] Port0 [5:4] I/O multiplexing scheme:

- 00: Port0 [5:4] are interconnected to GPIO0 [5:4] signals
- 01: Port0 [5:4] are interconnected to DALI_rx and DALI_tx signals
- 10: Port0 [5:4] are interconnected to I2C_scl and I2C_sda signals
- 11: Port0 [5:4] are interconnected to UART_rx and UART_tx signals

Bit 7 - 6:

RFU reserved; in order to guarantee future compatibility, the bits are kept or set to 0 during register write operations.

MSC_IOMXP1 (Port P1 I/O MUX control register)

Table 10. MSC_IOMXP1 (Port P1 I/O MUX control register)

Offset: 0x2B							
			Default	value: 0x3F			
7	6	5 4 3 2 1 0					
R	RFU Sel_P15 Sel_P14 Sel_P13 Sel_P12 Sel_P11 Sel_P10						
r r/w							

The Port1 I/O multifunction signal configuration register (for functionality description refer to Section 7.3 on page 40).

Check device feature availability.

Bit 0:

Sel_P10 Port1 [0] I/O multiplexing scheme:

- 0: Port1 [0] is interconnected to GPIO1 [0] signal
- 1: Port1 [0] is interconnected to PWM [0] signal

Bit 1:

Sel_P11 Port1 [1] I/O multiplexing scheme:

- 0: Port1 [1] is interconnected to GPIO1 [1] signal
- 1: Port1 [1] is interconnected to PWM [1] signal

Bit 2:

Sel_P12 Port1 [2] I/O multiplexing scheme:

- 0: Port1 [2] is interconnected to GPIO1 [2] signal
- 1: Port1 [2] is interconnected to PWM [2] signal

Bit 3:

Sel_P13 Port1 [3] I/O multiplexing scheme:

- 0: Port1 [3] is interconnected to GPIO1 [3] signal
- 1: Port1 [3] is interconnected to PWM [3] signal

Bit 4:

Sel_P14 Port1 [4] I/O multiplexing scheme: 0: Port1 [4] is interconnected to GPIO1 [4] signal

1: Port1 [4] is interconnected to PWM [4] signal

Bit 5:

Sel_P15 Port1 [5] I/O multiplexing scheme:

- 0: Port1 [5] is interconnected to GPIO1 [5] signal
- 1: Port1 [5] is interconnected to PWM [5] signal

Bit 7 - 6:

RFU reserved; in order to guarantee future compatibility, the bits are kept or set to 0 during register write operations.

MSC_IOMXP2 (Port P2 I/O MUX control register)

Table 11. MSC	IOMXP2	(Port P2	I/O MUX	control registe	r)
		(· •·· =			• /

	Offset: 0x13 (indirect area)						
Default value: 0xFF							
7 6 5 4 3 2 1 0							0
Sel_SWIM RFU Sel_P25 Sel_P24 Sel_P23 RFU Sel_P21 RFU							
r/w	r	r/w	r/w	r/w	r	r/w	r

The Port1 I/O multifunction signal configurations register (for functionality description refer to Section 7.4 on page 41).

Check device feature availability.

Bit 0:

RFU reserved; must be kept 0 during register writing for future compatibility

Bit 1:

Sel_P21 Port2 [1] I/O multiplexing scheme:

0: Port2 [1] is interconnected to GPIO1 [6].

1: Port2 [1] is interconnected to DIGIN [1] signals.

Bit 2:

RFU reserved; must be kept 0 during register writing for future compatibility

Bit 3:

Sel_P23 Port2 [3] I/O multiplexing scheme:

0: Port2 [3] is interconnected to GPIO0 [7].

1: Port2 [3] is interconnected to DIGIN [3] signals.

Bit 5-4:

00: Port2 [5:4] are interconnected to GPIO1 [7:6] signals.

01: Selects the following signal assignment:

- Port2 [5] is interconnected to the GPIO1 [7] signal.
- Port2 [4] is interconnected to the DIGIN [4] signal.

10: Port2 [5:4] are interconnected to I2C_Scl and I2C_Sda signals.

11: Port2 [5:4] are interconnected to DIGIN [5:4] signals.

Note: The AFR_IOMXP2 [4] register field is capable only to configure the coding value 00 and 01: 00: Port2 [5:4] are interconnected to GPIO1 [7:6] signals.

01: Following signal assignment selection:

- Port2 [5] is interconnected to the GPIO1 [7] signal.
- Port2 [4] is interconnected to the DIGIN [4] signal.

Bit 6:

RFU reserved; in order to guarantee future compatibility, the bits are kept or set to 0 during register write operations.

Bit 7:

Sel_SWIM SWIM alternate function signal enable; this feature is active when the SWD field of the register CFG_GCR is set.

0: SWIM pin is configured with the GPIO0 [6] signal.

1: SWIM functionality is preserved.

MSC_INPP2AUX1 (INPP aux register)

Table 12. MSC_INPP2AUX1 (INPP aux register)

Offset: 0x08 (indirect area)							
		0)efault value	e: 0x00			
7	6	5	5 4 3 2 1 0				
ADCTRG_EN	RFU		INPP2_PULCTR [5:0]				
r/w	r			r/w			

Check device feature availability.

Bit 5 - 0:

INPP2_PULCTR [5:0]. This register configures respectively the INPP2 [5:0] pull-up functionality as follows:

0: enable pad pull-up features (enabled by default)

1: disable pad pull-up

Bit 6:

RFU reserved; in order to guarantee future compatibility, the bits are kept or set to 0 during register write operations.

Bit 7:

ADCTRG_EN controls the ADC HW triggered conversion request:

0: disable the ADC HW triggered conversion request (disabled by default)

1: enable the ADC HW triggered conversion request. Set/cleared by SW. Cleared by HW when SW/HW conversion starts or when the stop command is issued

Note: Due to DIGINs interconnections, the pull-up functionality must be configured in the same way if the two pins are connected together:

- DIGIN10 is controlled by the register field INPP2_PULCTR [1:0]
- DIGIN32 is controlled by the register field INPP2_PULCTR [3:2]
- DIGIN54 is controlled by the register field INPP2_PULCTR [5:4].

When the DIGIN1 signal is selected on the SWIM pin the pull-up is always enabled.

8 Memory and register map

8.1 Memory map overview

This section describes the register map implemented in STNRG devices. *Table 13* shows the main memory map organization. All registers and memory spaces are configured within the first 64 Kbytes of memory, the remaining address spaces are kept reserved for the future use.

Address	Description				
00.0000h 00.17FFh	6 kB RAM [data and stack area ⁽¹⁾]				
00.1800h 00.3FFFh	Reserved				
00.4000h 00.43FFh	1 kB data E ² PROM				
00.4400h 00.47FFh	Reserved				
00.4800h 00.487Fh	128 option bytes				
00.4880h 00.4FFFh	Reserved				
00.5000h 00.57FFh	Peripheral register region				
00.5800h 00.5FFFh	Reserved				
00.6000h 00.67FFh	2 kB boot ROM				
00.6800h 00.7EFFh	Reserved				
00.7F00h 00.7FFFh	Core register region				
00.8000h	32 interrupt vectors				
00.8080h 00.FFFFh	32 kB program Flash				
01.0000h FF.FFFFh	Reserved				

Table 13. Internal memory map

 By default, the stack address is initialized at 0x07FF and rolls over when it reaches the address value of 0x0400. The stack address value may be modified by the user at runtime.

8.2 Register map

Section 8.2.1 shows the STNRG memory map.

8.2.1 General purpose I/O GPIO0 register map

Address	Block	Register name	Register description
0x00.5000		P0_ODR	Output data
0x00.5001		P0_IDR	Input data
0x00.5002	GPIO0	P0_DDR	Data direction
0x00.5003		P0_CR1	Control register 1
0x00.5004		P0_CR2	Control register 2

Table 14. General purpose I/O GPIO0 register map

8.2.2 General purpose I/O GPIO1 register map

Table 15. General purpose I/O GPIO0 register map

Address	Block	Register name	Register description
0x00.5005		P1_ODR	Output data
0x00.5006	GPIO1	P1_IDR	Input data
0x00.5007		P1_DDR	Data direction
0x00.5008		P1_CR1	Control register 1
0x00.5009		P1_CR2	Control register 2

8.2.3 Miscellaneous registers

Direct register address mode

Address	Block	Register name	Register description
0x00.5010		MSC CFGP00	P00 input line control
0x00.5010		MSC_CFGP01	P01 input line control
		—	
0x00.5012		MSC_CFGP02	P02 input line control
0x00.5013		MSC_CFGP03	P03 input line control
0x00.5014		MSC_CFGP04	P04 input line control
0x00.5015		MSC_CFGP05	P05 input line control
0x00.5016		MSC_CFGP20	P20 input line control
0x00.5017		MSC_CFGP21	P21 input line control
0x00.5018		MSC_CFGP22	P22 input line control
0x00.5019		MSC_CFGP23	P23 input line control
0x00.501A		MSC_CFGP24	P24 input line control
0x00.501B		MSC_CFGP25	P25 input line control
0x00.501C		MSC_STSP0	Port0 status
0x00.501D		MSC_STSP2	Port2 status
0x00.501E		MSC_INPP2	Port2 read
0x00.501F	MSC	RFU	Reserved for future use
0x00.5020	IVISC	MSC_DACCTR	Comparator and DAC configuration ⁽¹⁾
0x00.5021		MSC_DACIN0	DAC0 input data
0x00.5022		MSC_DACIN1	DAC1 input data
0x00.5023		MSC_DACIN2	DAC2 input data
0x00.5024		MSC_DACIN3	DAC3 input data
0x00.5025		MSC_SMDCFG01	SMED 0 - 1 behavior
0x00.5026		MSC_SMDCFG23	SMED 2 - 3 behavior
0x00.5027		MSC_SMDCFG45	SMED 4 - 5 behavior
0x00.5028		MSC_SMSWEV	SMED software events
0x00.5029		MSC_SMUNLOCK	SMED unlock
0x00.502A		MSC_CBOXS0	Connection matrix selection for SMED 0
0x00.502B		MSC_CBOXS1	Connection matrix selection for SMED 1
0x00.502C		MSC_CBOXS2	Connection matrix selection for SMED 2
0x00.502D		MSC_CBOXS3	Connection matrix selection for SMED 3
0x00.502E		MSC_CBOXS4	Connection matrix selection for SMED 4
0x00.502F		MSC_CBOXS5	Connection matrix selection for SMED 5
-	l	_	

Table 16. Miscellaneous direct register address mode

Address	Block	Register name	Register description
0x00.5030		MSC_IOMXSMD	SMED Trace multiplexing on port 0
0x00.5031		MSC_CFGP10	P10 input line control
0x00.5032		MSC_CFGP11	P11 input line control
0x00.5033		MSC_CFGP12	P12 input line control
0x00.5034		MSC_CFGP13	P13 input line control
0x00.5035		MSC_CFGP14	P14 input line control
0x00.5036	MSC	MSC_CFGP15	P15 input line control
0x00.5037	IVISC	MSC_STSP1	Port 1 status
0x00.5038		RFU	Reserved for future use
0x00.5039		MSC_INPP3	Port 3 (COMP) read
0x00.503A		MSC_IOMXP0	Port 0 alternate function MUX
0x00.503B		MSC_IOMXP1	Port 1 alternate function MUX
0x00.503C]	MSC_IDXADD	MSC indirect register
0x00.503D		MSC_IDXDAT	MSC indirect data

Table 16. Miscellaneous direct register address mode (continued)

1. The register bitmask definition depends on product.

Indirect register address mode

Table 17. Miscellaneous indirect register address mode			
Address (IDX)	Block	Register name	Register description
0x00		MSC_FTM0CKSEL	Basic timer source clock selection
0x01		MSC_FTM0CKDIV	Basic Timer0 clock prescaler
0x02		MSC_FTM0CONF	Basic Timer0 counter value
0x03		MSC_FTM1CKDIV	Basic Timer1 clock prescaler
0x04		MSC_FTM1CONF	Basic Timer1 counter value
0x05		MSC_DALICKSEL	DALI clock selection
0x06		MSC_DALICKDIV	DALI filter clock division factor
0x07		MSC_DALICONF	DALI filter mode configuration
0x08		MSC_INPP2AUX1	INPP2 auxiliary configuration register 1
0x09	MCC (indire at)	MSC_INPP2AUX2	INPP2 auxiliary configuration register 2
0x0A	MSC (indirect)	MSC_DAC0HYS	DAC0 hysteresis controls
0x0B		MSC_DAC1HYS	DAC1 hysteresis controls
0x0C		MSC_DAC2HYS	DAC2 hysteresis controls
0x0D		MSC_DAC3HYS	DAC3 hysteresis controls
0x0E		MSC_CFGP30	P30 input line control
0x0F		MSC_CFGP31	P31 input line control
0x10		MSC_CFGP32	P32 input line control
0x11		MSC_CFGP33	P33 input line control
0x12		MSC_STSP3	Port 3 status
0x13		MSC_IOMXP2	Port2 alternate function MUX register

Table 17. Miscellaneous indirect register address mode

8.2.4 Flash and E²PROM non-volatile memories

Table 18. Non-volatile memory register map

Address	Block	Register name	Register description
0x00.505A		FLASH_CR1	Control register 1
0x00.505B		FLASH_CR2	Control register 2
0x00.505C		FLASH_nCR2	Control register 2 (protection)
0x00.505D		FLASH_FPR	Memory protection
0x00.505E	MIF	FLASH_nFPR	Memory protection (complemented register)
0x00.505F		FLASH_IAPSR	Flash status
0x00.5062		FLASH_PUKR	Write memory protection removal key register
0x00.5063		RFU	Reserved for future use
0x00.5064]	FLASH_DUKR	Write memory protection removal data
0x00.5071	<u> </u>	FLASH_WAIT	Time access wait-state reg.

8.2.5 Reset register

Table 19. RST_SR register map

Address	Block	Register name	Register description
0x00.50B3	RSTC	RST_SR	Reset control status

8.2.6 Clock controller register

Table 20. Clock controller register map			
Address	Block	Register name	Register description
0x00.50B4		CLK_SMD0	SMED 0 clock configuration
0x00.50B5		CLK_SMD1	SMED 1 clock configuration
0x00.50B6		CLK_SMD2	SMED 2 clock configuration
0x00.50B7		CLK_SMD3	SMED 3 clock configuration
0x00.50B8		CLK_SMD4	SMED 4 clock configuration
0x00.50B9		CLK_SMD5	SMED 5 clock configuration
0x00.50BA		RFU	Reserved for future use
0x00.50BB		RFU	Reserved for future use
0x00.50BC		RFU	Reserved for future use
0x00.50BD		RFU	Reserved for future use
0x00.50BE		CLK_PLLDIV	PLL clock divisor
0x00.50BF		CLK_AWUDIV	AWU clock divisor
0x00.50C0		CLK_ICKR	Internal clock control
0x00.50C1	Скс	CLK_ECKR	External clock control
0x00.50C2		CLK_PLLR	PLL control
0x00.50C3		CLK_CMSR	Clock master
0x00.50C4		CLK_SWR	Clock switch
0x00.50C5		CLK_SWCR	Switch control
0x00.50C6		CLK_CKDIVR	Clock dividers
0x00.50C7		CLK_PCKENR1	Peripherals clock enable
0x00.50C8		CLK_CSSR	Clock security system
0x00.50C9		CLK_CCOR	Configurable clock output
0x00.50CA		CLK_PCKENR2	Peripherals clock enable
0x00.50CB		RFU	Reserved for future use
0x00.50CC	 	CLK_HSITRIMR	HSI calibration trimmer
0x00.50CD	 	CLK_SWIMCCR	SWIM clock division
0x00.50CE	 	CLK_CCODIVR	CCO divider
0x00.50CF		CLK_ADCR	ADC clock configuration

Table 20. Clock controller register map

8.2.7 WWDG timers

Address	Block	Register name	Register description
0x00.50D1	WWDG	WWDG_CR	Watchdog control
0x00.50D2		WWDG_WR	Watchdog window

Table 21. WWDG timer register map

8.2.8 IWDG timers

Table 22. IWDG timer register map

Address	Block	Register name	Register description
0x00.50E0	IWDG	IWDG_KR	Watchdog key
0x00.50E1		IWDG_PR	Watchdog time base
0x00.50E2		IWDG_RLR	Watchdog counter value after reload

8.2.9 AWU timers

Table 23. AWU timer register map

Address	Block	Register name	Register description
0x00.50F0	AWU	AWU_CSR	AWU control status
0x00.50F1		AWU_APR	AWU asynchronous prescaler buffer
0x00.50F2		AWU_TBR	AWU time base selection

8.2.10 Inter-integrated circuit interface (I²C)

Table 24. T C Tegister Tilap				
Address	Block	Register name	Register description	
0x00.5210		I ² C_CR1	I ² C control register 1	
0x00.5211		I ² C_CR2	I ² C control register 2	
0x00.5212		I ² C_FREQR	I ² C frequency register	
0x00.5213		I ² C_OARL	I ² C own add-low register	
0x00.5214		I ² C_OARH	l ² C own add-high register	
0x00.5215		RFU	Reserved for future use	
0x00.5216	l ² C	I ² C_DR	I ² C data register	
0x00.5217	I C	I ² C_SR1	I ² C status register 1	
0x00.5218		I ² C_SR2	I ² C status register 2	
0x00.5219		I ² C_SR3	I ² C status register 3	
0x00.521A		I ² C_ITR	I ² C interrupt	
0x00.521B		I ² C_CCRL	I ² C clock control	
0x00.521C		I ² C_CCRH	I ² C clock control	
0x00.521D		I ² C_TRISER	I ² C rising edge	

Table 24. I²C register map

8.2.11 Universal asynchronous receiver/transmitter (UART)

Table 25. UART register map

Address	Block	Register name	Register description
0x00.5230		UART_SR	UART status
0x00.5231		UART_DR	UART data
0x00.5232		UART_BRR1	UART baud rate div mantissa [7:0]
0x00.5233	UART	UART_BRR2	UART baud rate div mantissa [11:8] SCIDIV FRACT [3:0]
0x00.5234	UARI	UART_CR1	UART control register 1
0x00.5235		UART_CR2	UART control register 2
0x00.5236		UART_CR3	UART control register 3
0x00.5237		UART_CR4	UART control register 4

8.2.12 System timer registers

	Table 26. System unter register map						
Address	Block	Register name	Register description				
0x00.5340		STMR_CR1	Control register 1				
0x00.5341		STMR_IER	Interrupt enable				
0x00.5342		STMR_SR1	Status register 1				
0x00.5343		STMR_EGR	Event generation				
0x00.5344	STMR	STMR_CNTH	Counter high				
0x00.5345		STMR_CNTL	Counter low				
0x00.5346		STMR_PSCL	Prescaler low				
0x00.5347		STMR_ARRH	Autoreload high				
0x00.5348		STMR_ARRL	Autoreload low				

Table 26. System timer register map

8.2.13 Auxiliary timer registers

Table 27. Auxiliary timer register map

Address	Block	Register name	Register description
0x00.5009	GPIO1	P1CR2	Control register 2
0x00.5036	MSC	MSC_CFGP15	P15 input line control
0x00.5037	WIGC	MSC_STSP1	Port 1 status
0x00.50C6		CLK_CCODIVR	CCO clock dividers
0x00.50C9	CKC	CLK_CCOR	Configurable clock output

8.2.14 Basic timer0 registers

Table 28. Basic timer0 register map

Address	Offset	Block	Register name	Register description
0x00.5031	N.A.	MSC	MSC_CFGP10	P10 input line control
0x00.5037	N.A.	IVISC	MSC_STSP1	Port 1 status
0x00.503C	0x00		MSC_FTM0CKSEL	Basic timer source clock selection
0x00.503C	0x01	MSC (indirect)	MSC_FTM0CKDIV	Basic Timer0 clock prescaler
0x00.503C	0x02	(MSC_FTM0CONF	Basic Timer0 counter value

8.2.15 Basic timer1 registers

Address	Offset	Block	Register name	Register description	
0x00.5032	N.A.	MSC	MSC_CFGP11	P11 input line control	
0x00.5037	N.A.	NISC	MSC_STSP1	Port 1 status	
0x00.503C	0x00	MSC (indirect)	MSC_FTM0CKSEL	Basic timer source clock selection	
0x00.503C	0x03		MSC_FTM1CKDIV	Basic Timer1 clock prescaler	
0x00.503C	0x04	(MSC_FTM1CONF	Basic Timer1 counter value	

Table 29. Basic timer1 register map

8.2.16 Digital addressable lighting interface (DALI)

Table 30. DALI register map

	······································					
Address	Block	Register name	Register description			
0x00.53C0		DALI_CLK_L	Data rate control			
0x00.53C1	-	DALI_CLK_H	Data rate control			
0x00.53C2	-	DALI_FB0	Forward message			
0x00.53C3	-	DALI_FB1	Forward message			
0x00.53C4		DALI_FB2	Forward message			
0x00.53C5	DALI	DALI_BD	Backward message			
0x00.53C6	-	DALI_CR	Control			
0x00.53C7		DALI_CSR	Control and status register			
0x00.53C8		DALI_CSR1	Control and status register 1			
0x00.53C9		DALI_REVLN	Control reverse signal line			

8.2.17 DALI noise rejection filter registers

Table 31. DALI filter register map

Address	Offset	Block	Register name	Register description
0x00.503C	0x05		MCS_DALICKSEL	DALI clock selection
0x00.503C	0x06	MSC (indirect)	MSC_DALICKDIV	DALI filter clock division factor
0x00.503C	0x07		MSC_DALICONF	DALI filter mode configuration

8.2.18 Analog-to-digital converter (ADC)

Table 32. ADC register map and reset value

Address	Block	Register name	Register description
0x00.5400		ADC_CFG	Configuration
0x00.5401		ADC_SOC	Start of conversion
0x00.5402		ADC_IER	Interrupt enable
0x00.5403		ADC_SEQ	Sequencer
0x00.5404		ADC_DATL_0	Low part data 0 converted
0x00.5405		ADC_DATH_0	High part data 0 converted
0x00.5406		ADC_DATL_1	Low part data 1 converted
0x00.5407		ADC_DATH_1	High part data 1 converted
0x00.5408		ADC_DATL_2	Low part data 2 converted
0x00.5409		ADC_DATH_2	High part data 2 converted
0x00.540A	ADC	ADC_DATL_3	Low part data 3 converted
0x00.540B	ADC	ADC_DATH_3	High part data 3 converted
0x00.540C		ADC_DATL_4	Low part data 4 converted
0x00.540D		ADC_DATH_4	High part data 4 converted
0x00.540E		ADC_DATL_5	Low part data 5 converted
0x00.540F		ADC_DATH_5	High part data 5 converted
0x00.5410	-	ADC_DATL_6	Low part data 6 converted
0x00.5411		ADC_DATH_6	High part data 6 converted
0x00.5412		ADC_DATL_7	Low part data 7 converted
0x00.5413		ADC_DATH_7	High part data 7 converted
0x00.5414		ADC_SR	Status
0x00.5415	<u> </u>	ADC_DLYCNT	SOC delay counter

8.2.19 State machine event driven (SMEDs)

The SMED<n> address register is:

ADD_REG = (5500h + (40h) * n) + offset

where $\langle n \rangle$ is the SMED instance number 0 - 5.

Table 33. SMED register map

Address (offset)	Block	Register name	Register description
0x00		SMD <n>_CTR</n>	Control
0x01		SMD <n>_CTR_TMR</n>	Control time
0x02		SMD <n>_CTR_INP</n>	Control input
0x03		SMD <n>_CTR_DTR</n>	Dithering
0x04		SMD <n>_TMR_T0L</n>	Time T0 LSB
0x05		SMD <n>_TMR_T0H</n>	Time T0 MSB
0x06		SMD <n>_TMR_T1L</n>	Time T1 LSB
0x07		SMD <n>_TMR_T1H</n>	Time T1 MSB
0x08		SMD <n>_TMR_T2L</n>	Time T2 LSB
0x09		SMD <n>_TMR_T2H</n>	Time T2 MSB
0x0A		SMD <n>_TMR_T3L</n>	Time T3 LSB
0x0B		SMD <n>_TMR_T3H</n>	Time T3 MSB
0x0C		SMD <n>_PRM_ID0</n>	IDLE state parameter0
0x0D	SMED <n></n>	SMD <n>_PRM_ID1</n>	IDLE state parameter1
0x0E		SMD <n>_PRM_ID2</n>	IDLE state parameter2
0x0F		SMD <n>_PRM_S00</n>	S0 state parameter0
0x10		SMD <n>_PRM_S01</n>	S0 state parameter1
0x11		SMD <n>_PRM_S02</n>	S0 state parameter2
0x12		SMD <n>_PRM_S10</n>	S1 state parameter0
0x13		SMD <n>_PRM_S11</n>	S1 state parameter1
0x14		SMD <n>_PRM_S12</n>	S1 state parameter2
0x15		SMD <n>_PRM_S20</n>	S2 state parameter0
0x16		SMD <n>_PRM_S21</n>	S2 state parameter1
0x17		SMD <n>_PRM_S22</n>	S2 state parameter2
0x18		SMD <n>_PRM_S30</n>	S3 state parameter0
0x19		SMD <n>_PRM_S31</n>	S3 state parameter1
0x1A		SMD <n>_PRM_S32</n>	S3 state parameter2

Address (offset)	Block	Register name	Register description
0x1B		SMD <n>_CFG</n>	Timer configuration register
0x1C		SMD <n>_DMP_L</n>	Counter dump LSB
0x1D		SMD <n>_DMP_H</n>	Counter dump MSB
0x1E		SMD <n>_GSTS</n>	General status
0x1F	SMED <n></n>	SMD <n>_IRQ</n>	Interrupt request register
0x20		SMD <n>_IER</n>	Interrupt enable register
0x21		SMD <n>_ISEL</n>	External events control
0x22		SMD <n>_DMP</n>	Dump enable
0x23		SMD <n>_FSM_STS</n>	FSM core status

Table 33. SMED register map (continued)

8.2.20 CPU register

Address	Block	Register name	Register description
0x00.7F00		A	Accumulator
0x00.7F01		PCE	Program counter extended
0x00.7F02		PCH	Program counter high
0x00.7F03		PCL	Program counter low
0x00.7F04		XH	X - index high
0x00.7F05	CPU	XL	X - index low
0x00.7F06		YH	Y - index high
0x00.7F07		YL	Y - index low
0x00.7F08		SPH	Stack pointer high
0x00.7F09		SPL	Stack pointer low
0x00.7F0A	1	CC	Code condition

Table 34. CPU register map

Note: Register space accessible in debug mode only.

8.2.21 Global configuration register

Table 35. CFG_GCR register map

Address	Block	Register name	Register description
0x00.7F60	GCR	CFG_GCR	Global configuration

8.2.22 Interrupt controller

Table 36. Interrupt software priority register map									
Address	Block	Register name	Register description						
0x00.7F70		ITC_SPR0	Interrupt SW priority register 0						
0x00.7F71		ITC_SPR1	Interrupt SW priority register 1						
0x00.7F72		ITC_SPR2	Interrupt SW priority register 2						
0x00.7F73	ITC	ITC_SPR3	Interrupt SW priority register 3						
0x00.7F74	110	ITC_SPR4	Interrupt SW priority register 4						
0x00.7F75		ITC_SPR5	Interrupt SW priority register 5						
0x00.7F76		ITC_SPR6	Interrupt SW priority register 6						
0x00.7F77		ITC_SPR7	Interrupt SW priority register 7						

Table 36. Interrupt software priority register map

8.2.23 SWIM control register

Table 37. SWIM register map

Address	Block	Register name	Register description
0x00.7F80	SWIM	SWIM_CSR	SWIM control status
0x00.7F90		DM_BK1E	
	DM		DM internal registers
0x00.7F9B		DM_VER	

9 Interrupt table

Table 38 shows the STNRG internal controller's interrupt.

Priority	Source Description		Wakeup from Halt	Wakeup from active- halt	Interrupt vector address
	RESET	Reset	Yes	Yes	8000h
	TRAP	Software interrupt			8004h
0	NMI	NMI (not maskable interrupt)	Yes ⁽¹⁾	Yes ⁽¹⁾	8008h
1	AWU	Auto-wakeup from Halt		Yes	800Ch
2	CKC	Clock controller			8010h
3	PO	GPIO0 [5:0] external interrupts	Yes ⁽¹⁾ , ⁽²⁾	Yes ⁽¹⁾ , ⁽²⁾	8014h
4	P1	GPIO1 [5:0], Aux/Basic timers interrupts	Yes ⁽¹⁾ , ⁽²⁾	Yes ⁽¹⁾ , ⁽²⁾	8018h
5	P2	DIGIN[5:0] external interrupts	Yes ⁽¹⁾ , ⁽²⁾	Yes ⁽¹⁾ , ⁽²⁾	801Ch
6	SMED0	SMED-0 interrupt			8020h
7	SMED1	SMED-1 interrupt			8024h
8	P3	Comparator [3:0] interrupts	Yes ⁽¹⁾ , ⁽²⁾	Yes ⁽¹⁾ , ⁽²⁾	8028h
9	RFU ⁽³⁾	Reserved for future use			802Ch
10	RFU ⁽³⁾	Reserved for future use			8030h
11	RFU ⁽³⁾	Reserved for future use			8034h
12	RFU ⁽³⁾	Reserved for future use			8038h
13	RFU ⁽³⁾	Reserved for future use			803Ch
14	RFU ⁽³⁾	Reserved for future use			8040h
15	SMED2	SMED-2 interrupt			8044h
16	SMED3	SMED-3 interrupt			8048h
17	UART	Tx complete			804Ch
18	UART	Receive register DATA FULL	Indirect ⁽⁴⁾	Indirect ⁽⁴⁾	8050h
19	l ² C	I ² C interrupt	Indirect ⁽⁴⁾	Yes	8054h
20	RFU ⁽³⁾	Reserved for future use			8058h
21	RFU ⁽³⁾	Reserved for future use			805Ch
22	ADC	End of conversion			8060h
23	SYS-TMR	Update/overflow			8064h
24	FLASH	EOP/WR_PG_DIS			8068h
25	DALI	DALI interrupt line	Indirect ⁽⁴⁾	Indirect ⁽⁴⁾	806Ch
26	SMED4	SMED-4 interrupt			8070h
27	SMED5	SMED-5 interrupt			8074h

Tahlo	38	Interru	nt v	octor		otion
Table	50.	menu	μιν	eciui	EVCE	JUOII

Priority	Source block	Description	Wakeup from Halt	Wakeup from active- halt	Interrupt vector address
28	RFU ⁽³⁾	Reserved future use			8078h
29	RFU ⁽³⁾	Reserved future use			807Ch

Table 38. Interrupt vector exception (continued)

1. The P [2, 0] [x] may be configured to generate a NMI requests.

2. The P [3, 0] [x] may be configured to generate an IRQ requests.

3. All RFU and unused interrupts should be initialized with 'IRET' for robust programming.

4. The P0 [x] may be configured to generate an IRQ and NMI request.

10 Option bytes

The user option byte is a memory E²PROM area allowing users to customize the IC device major functionalities:

- ROP: read-out protection control field
- UBC: user boot code protection
- PWM: configurable reset output value
- WDG: internal watchdog HW configuration
- AFR: alternate multifunction signals configuration
- CKC: clock controller functionalities (PLL, HSE enable, AWU clock selection, etc.)
- HSE: clock stabilization counter
- WAIT: Flash and E²PROM wait state access time has to be configured with value 0x00
- BOOT: configurable internal boot sources
- BL: bootloader control sequences

Except the ROP byte all the other option bytes are stored twice in a regular (OPT) and complemented format (NOPT) for redundancy. The option byte can be programmed in ICP mode through the SWIM interface or in IAP mode by the application with the exception of the ROP byte that can be only configured via the SWIM interface.

For further information about Flash programming refer to the programming manual "How to program STM8S and STM8A Flash program memory and data EEPROM" (PM0051).

For information on SWIM programming procedures refer to the "STM8 SWIM communication protocol and debug module" user manual (UM0470).

10.1 Option byte register overview

Add-		Option bits									
ress	Option name	7	6	5	4	3	2	1	0	Default settings	
4800h	ROP				RO	⊃ [7:0]				00h	
4801h	UCB				UBO	C [7:0]				00h	
4802h	nUCB				nUB	C [7:0]				FFh	
4803h	GENCFG	Rst_PWM5	Rst_PWM4	Rst_PWM3	Rst_PWM2	Rst_PWM1	Rst_PWM0	-	EN_COLD_CFG	00h	
4804h	nGENCFG	nRst_PWM5	nRst_PWM4	nRst_PWM3	nRst_PWM2	nRst_PWM1	nRst_PWM0	-	nEN_COLD_CFG	FFh	
4805h	MISCUOPT	-	-	1	-	LSI_EN	IWdg_HW	WWdg_HW	WWDG_HALT	28h	
4806h	nMISCUOPT	-	-	0	-	nLSI_EN	nlWdg_HW	nWWdg_HW	nWWDG_HALT	D7h	
4807h	CLKCTL	PWM_OD	-	SMD_HWtrg	CKAWUSEL1	EXTCLK	CKAWUSEL0	PR	SC [1:0]	89h	
4808h	nCLKCTL	nPWM_OD	-	nSMD_HWtrg	nCKAWUSEL1	nEXTCLK	nCKAWUSEL0	nPR	76h		
4809h	HSESTAB				HSEC	NT [7:0]				00h	
480Ah	nHSESTAB				nHSE	CNT [7:0]				FFh	
480Bh	ENHFEAT	-	BscTim1	ADC_MFlush	BscTim0	-	-	-	-	00h	
480Ch	nENHFEAT	-	nBscTim1	nADC_MFlush	nBscTim0	-	-	-	-	FFh	
480Dh	WAITSTATE	-	ADC_NAbt	-	ADC_AFlush	-	ADC_ARlod	Wait	Stat [1:0]	00h	
480Eh	nWAITSTATE	-	nADC_NAbt	-	nADC_AFlush	-	nADC_ARlod	nWai	tStat [1:0]	FFh	
480Fh	AFR_IOMXP0	-	-	Sel_P0	54 [1:0]	Sel_P	032 [1:0]	Sel_P0	10 [1:0] (2)	00h	
4810h	nAFR_IOMXP0	-	-	nSel_P	054 [1:0]	nSel_F	9032 [1:0]	nSel_P	010 [1:0] (2)	FFh	
4811h	AFR_IOMXP1	AUXTMR	-	Sel_P15	Sel_P14	Sel_P13	Sel_P12	Sel_P11	Sel_P10	3Fh	
4812h	nAFR_IOMXP1	nAUXTMR	-	nSel_P15	nSel_P14	nSel_P13	nSel_P12	nSel_P11	nSel_P10	C0h	
4813h	AFR_IOMXP2	Sel_SWIM	ADC_HWtrg	1	Sel_P24	Sel_P23	-	Sel_P21	-	7Ah	
4814h	nAFR_IOMXP2	nSel_SWIM	nADC_HWtrg	0	nSel_P24	nSel_P23	-	nSel_P21	-	85h	

Table 39. Option byte register overview - STNRG388A

66/131

STNRGxxxA

			Table 39. O	ption byte re	gister overvie	w - STNRG38	88A (continue	ed)			
Add-			Option bits								
ress	Option name	7	6	5	4	3	2	1	0	settings	
4815h	MSC_OPT0	-	-	UARTL	ine [1:0]	-	-	BootSel [1:0]		01h	
4816h	nMSC_OPT0	-	-	nUARTLine [1:0]		-	-	nBootSel [1:0]		FEh	
4817h 487Dh	RESERVED	-	-	-	-	-	-	-	-	00h	
487Eh	OPTBL		BL [7:0]						00h		
487Fh	nOPTBL				nBL [7:0]					FFh	

Note: The default setting values refer to the factory configuration. The factory configuration can be overwritten by the user in accordance

with the target application requirements.

The factory configuration values are loosed after user programming fields or in case of the ROP unprotecting attempt causing a "Global Flash Erase".

The predefined initialized bit-values (1 or 0) must be preserved during memory writing.

An undefined option bit must be keep 0 and the complement value at 1 during the memory writing sequence.

Add-		Option bits								
ress	Option name	7	6	5	4	3	2	1	0	settings
4800h	ROP				R	OP [7:0]			-	00h
4801h	UCB		UBC [7:0]						00h	
4802h	nUCB		nUBC [7:0]					FFh		
4803h	GENCFG	-	Rst_PWM4	Rst_PWM3	Rst_PWM2	Rst_PWM1	Rst_PWM0	-	EN_COLD_CFG	00h
4804h	nGENCFG	-	nRst_PWM4	nRst_PWM3	nRst_PWM2	nRst_PWM1	nRst_PWM0	-	nEN_COLD_CFG	FFh
4805h	MISCUOPT	-	-	1	-	LSI_EN	IWdg_HW	WWdg_HW	WWDG_HALT	28h
4806h	nMISCUOPT	-	-	0	-	nLSI_EN	nlWdg_HW	nWWdg_HW	nWWDG_HALT	D7h
4807h	CLKCTL	PWM_OD	-	SMD_HWtrg	CKAWUSEL1	EXTCLK	CKAWUSEL0	PR	SC [1:0]	89h
4808h	nCLKCTL	nPWM_OD	-	nSMD_HWtrg	nCKAWUSEL1	nEXTCLK	nCKAWUSEL0	nPR	SC [1:0]	76h

0
8,
3
-

			Table 40. 0	Option byte re	egister overvi	ew - STNRG	328A (continu	ed)		
Add-	Ontion nome				Ор	tion bits				Default
ress	Option name	7	6	5	4	3	2	1	0	settings
4809h	HSESTAB		1	L	HSE	ECNT[7:0]			L	00h
480Ah	nHSESTAB				nHS	ECNT[7:0]				FFh
480Bh	ENHFEAT	-	BscTim1	ADC_MFlush	BscTim0	-	-	-	-	00h
480Ch	nENHFEAT	-	nBscTim1	nADC_MFlush	nBscTim0	-	-	-	-	FFh
480Dh	WAITSTATE	-	ADC_NAbt - ADC_AFlush - ADC_ARlod WaitStat [1:0]				Stat [1:0]	00h		
480Eh	nWAITSTATE	-	nADC_NAbt	Abt - nADC_AFlush - nADC_ARlod nWaitStat [1:0]				tStat [1:0]	FFh	
480Fh	AFR_IOMXP0	-	-	Sel_P0	054 [1:0]	Sel_F	032 [1:0]	-	-	00h
4810h	nAFR_IOMXP0	-	-	nSel_P	054 [1:0]	nSel_l	P032 [1:0]	-	-	FFh
4811h	AFR_IOMXP1	AUXTMR	-	-	Sel_P14	Sel_P13	Sel_P12	Sel_P11	Sel_P10	1Fh
4812h	nAFR_IOMXP1	nAUXTMR	-	-	nSel_P14	nSel_P13	nSel_P12	nSel_P11	nSel_P10	E0h
4813h	AFR_IOMXP2	Sel_SWIM	ADC_HWtrg	1	Sel_P24	1	-	Sel_P21	-	7Ah
4814h	nAFR_IOMXP2	nSel_SWIM	nADC_HWtrg	0	nSel_P24	0	-	nSel_P21	-	85h
4815h	MSC_OPT0	-	-	UARTL	ine [1:0]	-	-	Boo	tSel [1:0]	01h
4816h	nMSC_OPT0	-	-	nUARTI	nUARTLine [1:0]		-	nBoo	otSel [1:0]	FEh
4817h 487Dh	RESERVED	-	-	-			-	-	-	00h
487Eh	OPTBL		1	1	E	3L [7:0]	1		1	00h
487Fh	nOPTBL				n	BL [7:0]				FFh

Option bytes

Note: The default setting values refer to the factory configuration. The factory configuration can be overwritten by the user in accordance with the target application requirements.

The factory configuration values are loosed after user programming fields or in case of the ROP unprotecting attempt causing a "Global Flash Erase".

The predefined initialized bit-values (1 or 0) must be preserved during memory writing.

An undefined option bit must be keep 0 and the complement value at 1 during the memory writing sequence.

S
-
Z
고
G.
×
2
Q
2

Option bytes

Add-		Option bits								
ress	Option name	7	6	5	4	3	2	1	0	Default settings
4800h	ROP		I		R	DP [7:0]				00h
4801h	UCB		UBC [7:0]							
4802h	nUCB		nUBC [7:0]							FFh
4803h	GENCFG	-	-	Rst_PWM3	Rst_PWM2	Rst_PWM1	Rst_PWM0	-	EN_COLD_CFG	00h
4804h	nGENCFG	-	-	nRst_PWM3	nRst_PWM2	nRst_PWM1	nRst_PWM0	-	nEN_COLD_CFG	FFh
4805h	MISCUOPT	-	-	1	-	LSI_EN	IWDG_HW	WWDG_HW	WWDG_HALT	28h
4806h	nMISCUOPT	-	-	0	-	nLSI_EN	nIWDG_HW	nWWDG_HW	nWWDG_HALT	D7h
4807h	CLKCTL	PWM_OD	-	SMD_HWtrg	CKAWUSEL1	EXTCLK	CKAWUSEL0	PRSC [1:0]		89h
4808h	nCLKCTL	nPWM_OD	OD - nSMD_HWtrg nCKAWUSEL1 nEXTCLK nCKAWUSEL0 nPRSC [1:0		SC [1:0]	76h				
4809h	HSESTAB		I		HSE	CNT [7:0]		I		00h
480Ah	nHSESTAB				nHSE	ECNT [7:0]				FFh
480Bh	ENHFEAT	-	BscTim1	ADC_MFlush	BscTim0	-	-	-	-	00h
480Ch	nENHFEAT	-	nBscTim1	nADC_MFlush	nBscTim0	-	-	-	-	FFh
480Dh	WAITSTATE	-	ADC_NAbt	-	ADC_AFlush	-	ADC_ARlod	Wait	Stat [1:0]	00h
480Eh	nWAITSTATE	-	nADC_NAbt	-	nADC_AFlush	-	nADC_ARlod	nWai	tStat [1:0]	FFh
480Fh	AFR_IOMXP0	-	-	Sel_P0	54 [1:0]	Sel_P	032 [1:0]	-	-	00h
4810h	nAFR_IOMXP0	-	-	nSel_P	054 [1:0]	nSel_F	2032 [1:0]	-	-	FFh
4811h	AFR_IOMXP1	AUXTMR	-	-	-	Sel_P13	Sel_P12	Sel_P11	Sel_P10	0Fh
4812h	nAFR_IOMXP1	nAUXTMR	-	-	-	nSel_P13	nSel_P12	nSel_P11	nSel_P10	F0h
4813h	AFR_IOMXP2	Sel_SWIM	ADC_HWtrg	-	1	-	-	-	-	50h
4814h	nAFR_IOMXP2	nSel_SWIM	nADC_HWtrg	-	0	-	-	-	-	AFh
4815h	MSC_OPT0	-	-	UARTL	ine [1:0]	-	-	Boot	Sel [1:0]	01h
4816h	nMSC_OPT0	_	-	nUARTL	ine [1:0]	_	-	nBoo	otSel [1:0]	FEh

			Table 41. C	Option byte re	egister overvi	ew - STNRG	288A (continue	ed)			
Add-	Ontion nome	Option name									Default
ress	Option name	7	6	5	4	3	2	1	0	settings	
4817h 487Dh	RESERVED	-	-	-	-	-	-	-	-	00h	
487Eh	OPTBL		BL [7:0]							00h	
487Fh	nOPTBL		nBL [7:0]								

The default setting values refer to the factory configuration. The factory configuration can be overwritten by the user in accordance Note: with the target application requirements.

The factory configuration values are loosed after user programming fields or in case of the ROP unprotecting attempt causing a "Global Flash Erase".

The predefined initialized bit-values (1 or 0) must be preserved during memory writing.

An undefined option bit must be keep 0 and the complement value at 1 during the memory writing sequence.

Option bytes

10.2 Option byte register description

The option byte registers are mapped inside the E²PROM data region.

10.2.1 ROP (memory read-out protection register)

Table 42. ROP (memory read-out protection register)

Offset: 0x004800									
Default value: 0x00									
7	6	5	4	3	2	1	0		
ROP [7:0]									
	r/w								

Bit 7 - 0:

ROP [7:0] memory read-out protection:

0xAA: enable read-out protection. When read-out protection is enabled, reading or modifying the Flash program memory and DATA area in ICP mode (using the SWIM interface) is forbidden, whatever the write protection settings are.

10.2.2 UBC (UBC user boot code register)

Table 43. UBC (UBC user boot code register)

Offset: 0x004801									
Default value: 0x00									
7	7 6 5 4 3 2 1 0								
	UBC [7:0]								
	r/w								

Bit 7 - 0:

UBC [7:0] user boot code write protection memory size: 0x00: no UBC, no Flash memory write-protection

0x01: pages 0 to 1 defined as UBC; 1 Kbyte memory write-protected (0x00.8000-0x00.83FF)

0x02: pages 0 to 3 defined as UBC; 2 Kbyte memory write-protected (0x00.8000-0x00.87FF)

0x03: pages 0 to 4 defined as UBC; 2.5 Kbyte memory write-protected (0x00.8000-0x00.89FF)

... (512 byte every page)

0x3E: pages 0 to 63 defined as UBC; 32 Kbyte memory write-protected (0x00.8000-0x00.FFFF)

Other values: reserved.

10.2.3 nUBC (UBC user boot code register protection)

	Offset: 0x004802									
	Default value: 0xFF									
7	6	5	4	3	2	1	0			
	nUBC [7:0]									
	r/w									

Table 44. nUBC (UBC user boot code register protection)

nUBC: not (UBC) EMC byte protection.

10.2.4 GENCFG (general configuration register)

Table 45. GENCFG	i (general	configuration register)
------------------	------------	-------------------------

Offset: 0x004803									
Default value: 0x00									
7	6	5	4	3	2	1	0		
		RFU	EN_COLD_CFG						
		r	r/w						

Bit 0:

The EN_COLD_CFG enables IC cold configuration through the option byte register AFR_IOMXP0, P1 and P2:

0: default case, the IC multifunction signal configuration is performed by the miscellaneous registers MSC_IOMXP0, MSC_IOMXP1 and MSC_IOMXP2 (warm configuration).

1: enables the multifunction signal configuration through the option byte registers AFR_IOMXP0, AFR_IOMXP1 and AFR_IOMXP2 (cold configuration).

Bit 1:

RFU reserved; must be kept 0 during register writing for future compatibility

Bit 7:2:

Rst_PWM [5:0] configures the PWM [n] reset value after the NRST signal

0: PWM [n] output low level (native default value)

- 1: PWM [n] output high level.
- Note: The PWM signal programmed reset value is configured during the option byte loader phase, then before the NRST is released it assumes its proper initial values. The Rst_PWM5 is available only on the STNRG388A, otherwise keep 0. The Rst_PWM4 is available only on the STNRG388A and STNRG328A, otherwise keep 0.

10.2.5 nGENCFG (general configuration register protection)

	Offset: 0x004804										
Default value: 0xFF											
7	6	5	4	3	2	1	0				
		nRst_PW	/M [5:0]			nRFU	nEN_COLD_CFG				
	r/w						r/w				

Table 46. nGENCFG (general configuration register protection)

nGENCFG: not (GENCFG) EMC byte protection

10.2.6 MISCUOPT (miscellaneous configuration register)

Table 47. MISCUOPT (miscellaneous configuration register)

	Offset: 0x004805										
	Default value: 0x28 (factory configuration)										
7	7 6 5 4 3 2 1					0					
R	RFU		RFU RFU		RFU	LSI_EN	IWdg_hw	WWdg_hw	WWdg_HALT		
	r r			r/w	r/w	r/w	r/w				

Bit 0:

WWdg_HALT window watchdog reset on Halt:

0: no reset generated on Halt if WWDG is active

1: reset generated on Halt if WWDG is active.

Bit 1:

WWdg_hw window watchdog hardware enable:

0: window watchdog activation by SW

1: window watchdog activation by HW.

Bit 2:

IWdg_hw independent watchdog hardware enable:

0: independent watchdog activation by SW

1: independent watchdog activation by HW.

Bit 3:

LSI_EN low speed internal RCOSC clock enable:

0: LSI clock is not available to CPU

1: LSI cock is enabled for CPU.

Bit 4:

RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 5:

RFU reserved; must be kept 1 during register writing for future compatibility.

Bit 7 - 6:

RFU reserved; must be kept 0 during register writing for future compatibility.

10.2.7 nMISCUOPT (miscellaneous configuration register protection)

Table 48. nMISCUOPT (miscellaneous configuration register protection)

	Offset: 0x004806										
Default value: 0xD7 (factory configuration)											
7 6 5 4 3		2	1 0								
nRFU n		nRFU	nRFU	nLSI_EN	nlWdg_hw	nWWdg_hw	nWWdg_HALT				
	r r		r	r/w	r/w	r/w	r/w				

nMISCUOPT: not (MISCUOPT) EMC byte protection

10.2.8 CLKCTL (CKC configuration register)

Table 49. CLKCTL (CKC configuration register)

	Offset: 0x004807									
Default value: 0x89 (factory configuration)										
7	6 5 4 3 2 1 0									
PWM_OD	RFU	SMD_HWtrg	CKAWUSEL1	EXTCLK	CKAWUSEL0	PRSC [1:0]				
r/w	r r/w r/w r/w r/w									

Bit 1 - 0:

PRSC [1:0] prescaler value for HSE to provide AWU unit with the low speed clock:

00: 24 MHz to 128 kHz prescaler

01: 16 MHz to 128 kHz prescaler

10: 8 MHz to 128 kHz prescaler

11: 4 MHz to 128 kHz prescaler.

Bit 3:

EXTCLK external clock selection:

0: external crystal oscillator clock connected to HseOscin and HseOscout signals

1: external direct drive clock connected to HseOscin.

Bit 4, 2:

CKAWUSEL [1:0] AWU clock selection:

- 00: low speed internal clock used for AWU module
- 01: HSE high speed external clock with prescaler used for AWU module
- 10: reserved encoding value
- 11: reserved encoding value.

Bit 5:

SMD_HWtrg enable SMED ADC HW trigger functionality:

0: disable SMED ADC HW trigger request

1: enable SMED ADC HW trigger request; this functionality requires that all SMEDs must be configured with $f_{SMED} \ge f_{MASTER}$ and the ADC_HWtrg option bit of the AFR_IOMXP2 register programmed at '0'.

Bit 6:

RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 7:

PWM_OD PWM output pseudo- open drain features:

0: enable PWM output signal open drain. This functionality is configurable by GPIO1 internal registers.

1: disable PWM output signal open drain functionality.

10.2.9 nCLKCTL (CKC configuration register protection)

Table 50. nCLKCTL (CKC configuration register protection)

Offset: 0x004808									
Default value: 0x76 (factory configuration)									
7	6 5 4 3 2 1 0						0		
nPWM_OD	nRFU	nSMD_HWtrg	nCKAWUSEL1	nEXTCLK	nCKAWUSEL0	nPRS	C [1:0]		
r/w	r	r/w	r/w	r/w	r/w	r/w			

nCLKCTL: not (CLKCTL) EMC byte protection.

10.2.10 HSESTAB (HSE clock stabilization register)

Table 51. HSESTAB (HSE clock stabilization register)

	Offset: 0x004809									
Default value: 0x00										
7	7 6 5 4 3 2 1 0									
	HSECNT [7:0]									
	r/w									

Bit 7 - 0:

HSECNT [7:0] HSE crystal oscillator stabilization cycles: 0x00: 2048 clock cycles 0xB4: 128 clock cycles 0xD2: 8 clock cycles

0xE1: 0.5 clock cycles.

10.2.11 nHSESTAB (HSE clock stabilization register protection)

Table 52. nHSESTAB (HSE clock stabilization register protection)

	Offset: 0x00480A										
Default value: 0xFF											
7	7 6 5 4 3 2 1 0										
			nHSEC	NT [7:0]							
	r/w										

nHSESTAB: not (HSESTAB) EMC byte protection.

10.2.12 ENHFEAT (EXP features configuration register)

Table 53. ENHFEAT (EXP features configuration register)

Offset: 0x00480B									
Default value: 0x00									
7	6	6 5 4 3 2 1 0							
RFU	BscTim1	ADC_MFlush	BscTim0	RFU					
r	r/w	r/w	r/w		r				

Bit 0 - 3:

RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 4:

BscTim0 enable basic Timer0:

- 0: enable basic Timer0
- 1: disable basic Timer0.

Bit 5:

ADC_MFlush enable ADC mode flush:

0: enable ADC mode flush

1: disable ADC mode flush.

Bit 6:

BscTim1 enable basic Timer1:

0:enable basic Timer0

1: disable basic Timer0.

Bit 7:

RFU reserved; must be kept 0 during register writing for future compatibility.

10.2.13 **nENHFEAT (EXP features configuration register)**

Table 54. nENHFEAT (EXP features configuration protection)

	Offset: 0x00480C										
Default value: 0xFF											
7	6 5 4 3 2 1 0										
nRFU	nBscTim1	nADC_MFlush	nBscTim0	nRFU							
r	r r/w r/w r/w r										

nENHFEAT: not (ENHFEAT) EMC byte protection.

10.2.14 WAITSTATE (Flash wait state register)

Table 55. WAITSTATE (Flash wait state register)

	Offset: 0x00480D										
Default value: 0x00											
7	6	5	4	3	2	1	0				
RFU	ADC_NAbt	RFU	ADC_AFlush	RFU	ADC_ARlod	WaitS	stat[1:0]				
r	r/w	r	r/w	r	r/w	r/w					

Bit 1 - 0:

WaitStat [1:0] configures the E²PROM and Flash programmable delay read access time:

00: 0 no delay cycle (default case $f_{\mbox{MASTER}}$ at 16 $\mbox{MHz})$

- 01: 1 delay cycles
- 10: 2 delay cycles
- 11: 3 delay cycles.

Bit 2:

ADC_ARlodenable ADC auto-reload conversion command:

- 0: enable ADC auto-reload conversion command
- 1: disable ADC auto-reload conversion command

Bit 3:

RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 4:

ADC_AFlush enable ADC auto-flush:

- 0: enable ADC auto-flush command
- 1: disable ADC auto-flush command

Bit 5:

RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 6:

ADC_NAbt enable ADC new abort mode:

0: enable ADC new abort/flush mode

1: disable ADC new abort/flush mode (ADC abort/flush sequence compliant with the STLUXxxxA family).

Bit 7:

RFU reserved; must be kept 0 during register writing for future compatibility.

10.2.15 nWAITSTATE (Flash wait state register protection)

Table 56. nWAITSTATE	(Flash wait state protection)
----------------------	-------------------------------

	Offset: 0x00480E									
Default value: 0xFF										
7	6 5 4 3 2 1 0						0			
nRFU	nADC_NAbt	nRFU	nADC_AFlush	nRFU	nADC_ARlod	nWaitSt	tat [1:0]			
r	r/w	r	r/w	r	r/w	r/w				

nWAITSTATE: not (WAITSTATE) EMC byte protection.

10.2.16 AFR_IOMXP0 (alternative Port0 configuration register)

Table 57. AFR_IOMXP0 (alternative Port0 configuration register)

	Offset: 0x00480F										
Default value: 0x00											
7	6	5 4		3	2	1	0				
R	RFU Sel_P054 [1:0]		Sel_P0	32 [1:0]	Sel_P010 [1:0] ⁽¹⁾						
	r r/w		r/w		r/w						

1. Available only on the STNRG388A, otherwise keep 0.

Bit 5 - 0:

Refer to MSC_IOMXP0 miscellaneous register field description in *Section 7.6 on page 44*. Bit 7 - 6:

RFU reserved; must be kept 0 during register writing for future compatibility.

10.2.17 nAFR_IOMXP0 (alternative Port0 configuration register protection)

Offset: 0x004810											
Default value: 0xFF											
7	6	5	4	3	2	1	0				
nRFL	nRFU		nSel_P054 [1:0])32 [1:0]	nSel_P010 [1:0]					
r		r/w		r/	w	r/w					

Table 58. nAFR_IOMXP0 (alternative Port0 configuration register protection)

nAFR_IOMXP0: not (AFR_IOMXP0) EMC byte protection.

10.2.18 AFR_IOMXP1 (alternative Port1 configuration register)

Table 59. AFR_IOMXP1 (alternative Port1 configuration register)

	Offset: 0x004811											
Default value: 0x3F, 0x1F or 0F depends of devices												
7	6	5	4	3	2	1	0					
AUXTIM	RFU	Sel_p15 ⁽¹⁾	Sel_p14 ⁽²⁾	Sel_p13	Sel_p12	Sel_p11	Sel_p10					
r/w	r	r/w	r/w	r/w	r/w	r/w	r/w					

1. Available only on the STNRG388A, otherwise keep 0.

2. Available only on the STNRG388A and STNRG328A, otherwise keep 0.

Bit 5 - 0:

Refer to MSC_IOMXP1 miscellaneous register field description in *Section 7.6 on page* 44.

Bit 6:

RFU reserved; must be kept 0 during register writing for future product compatibility.

Bit 7:

AUXTIM CCO aux timer compatibility features

- 0: CCOaux timer enabled
- 1: CCOaux timer disabled.

10.2.19 nAFR_IOMXP1 (alternative Port1 configuration register protection)

Table 60. nAFR_IOMXP1 (alternative Port1 configuration register protection)

Offset: 0x004812											
Default value: 0xC0, 0xE0 or 0xF0 depends on devices											
7	6	5	4	3	2	1	0				
nAUXTIM	nRFU	nSel_p15	nSel_p14	nSel_p13	nSel_p12	nSel_p11	nSel_p10				
r/w	r	r/w	r/w	r/w	r/w	r/w	r/w				

nAFR_IOMXP1: not (AFR_IOMXP1) EMC byte protection.

10.2.20 AFR_IOMXP2 (alternative Port2 configuration register)

	Offset: 0x004813										
Default value: 0x7A or 50, depends on devices											
7	6	5	4	3	2	1	0				
SEL_SWIM	ADC_HWtrg	RFU	Sel_P24 ⁽¹⁾	Sel_P23 ⁽²⁾	RFU	Sel_P21 ⁽¹⁾	RFU				
r/w	r/w	r	r/w	r/w	r	r/w	r				

Table 61. AFR_IOMXP2 (alternative Port2 configuration register)

1. Available only on the STNRG388 and STNRG328A, on the STNRG288A keep 1.

2. Available only on the STNRG388, otherwise keep 0.

Bit 0:

RFU reserved; must be kept 0 during register writing for future product compatibility.

Bit 1:

Sel_P21; refer to MSC_IOMXP2 miscellaneous register field description in *Section 7.6 on page 44*.

Bit 2:

RFU reserved; must be kept 0 during register writing for future product compatibility.

Bit 3:

Sel_P23; refer to MSC_IOMXP2 miscellaneous register field description in Section 7.6.

Bit 4:

Sel_P24; refer to MSC_IOMXP2 miscellaneous register field description in Section 7.6.

Bit 5:

RFU1 reserved; must be kept 1 during register writing for future products compatibility.

Bit 6:

ADC_HWtrg: enable ADC HW trigger functionality.

0: enable ADC HW trigger.

1: disable ADC HW trigger.

Bit 7:

Sel_SWIM; refer to MSC_IOMXP2 miscellaneous register field description in *Section 7.4 on page 41*.

10.2.21 nAFR_IOMXP2 (alternative Port2 configuration register protection)

Table 62. nAFR_IOMXP2 (alternative Port2 configuration register protection)

	Offset: 0x004814										
Default value: 0x85 or AF, depends on devices											
7	6	5	4	3	2	1	0				
nSEL_SWIM	nADC_HWtrg	nRFU	nSel_P24	nSel_P23	nRFU	nSel_P21	nRFU				
r/w	r/w	r	r/w	r/w	r	r/w	r				

nAFR_IOMXP2: not (AFR_IOMXP2) EMC byte protection.

10.2.22 MSC_OPT0 (miscellaneous configuration reg0)

Table 63. MSC_OPT0 (miscellaneous configuration reg0)

	Offset: 0x004815										
Default value: 0x01											
7	6	5 4		3	2	1	0				
F	RFU UARTline [1:0]		RF	U	BootSel [1:0]						
	r r/w		r		r/w						

Bit 1 - 0:

BootSel [1:0] boot-ROM peripheral enables:

00: automatic scan boot sources; this selection enables the automatic scan configuration sequence of all possible initializing peripheral devices: Periph0 (UART), Periph1 (RFU).

01: enable boot source: Periph0

10: enable boot source: Periph1

11: enable boot sources: Periph1, Periph0

Bit 2 - 3:

RFU reserved; must be kept 0 during register writing for future compatibility.

Bit 5 - 4:

UARTline [1:0] selects the UART port configuration pins involved during the bootload sequence in warm configuration mode; in case of cold configuration, this field is ignored since the UART port is selected by the register AFR_IOXP0.

00: boot sequence with UART i/f configured in all possible UART multiplexed signal schemes. This sequence is used when the UART i/f position is not specified. 01: boot sequence with UART i/f configured on P0 (1, 0) available only on the STNRG388A.

10: boot sequence with UART i/f configured on P0 (3, 2)

11: boot sequence with UART i/f configured on P0 (5, 4).

Bit 7 - 6:

RFU reserved; must be kept 0 during register writing for future compatibility.

10.2.23 nMSC_OPT0 (miscellaneous configuration reg0 protection)

Offset: 0x004816											
Default value: 0xFE											
7	6	5	4	3	2	1	0				
nR	nRFU nUARTline [1:0]		nRFU		nBootSel [1:0]						
	r r/w		r		r/w						

Table 64. nMSC_OPT0 (miscellaneous configuration reg0 protection)

nMSC_OPT0: not (MSC_OPT0) EMC byte protection.

10.2.24 OPTBL (option byte bootloader)

Table 65. OPTBL (option byte bootloader)
--

Offset: 0x00487E											
Default value: 0x00											
7 6 5 4 3 2 1 0											
BL [7:0]											
r/w											

Bit 7 - 0:

BL [7:0] bootloader field checked by the internal BootROM code during the STNRG initialization phase. The content of register locations 0x00487E, 0x00487F and 0x008000 determine the bootloader SW flow execution sequence.

10.2.25 nOPTBL (option byte boot loader protection)

	Offset: 0x00487F										
Default value: 0x00											
7 6 5 4 3 2 1 0											
nBL [7:0]											
r/w											

Table 66. nOPTBL (option byte boot loader protection)

nOPTBL: not (OPTBL) EMC byte protection.

11 Device identification

11.1 Unique ID

The STNRG family provides a 56-bit unique identifier code usable as a device identification number which can be used to increase the device security. The unique ID code is a frozen signature not alterable by the user.

The unique device identifier is ideally used by the application software and is suited for:

- Serial code
- Security keys in conjunction with cryptographic software to increase the embedded Flash code security
- Activating the secure boot sequence.

	•		. •		giotoi	010111	011		
Adduses	Ontion name				Uni	que ID I	oits		
Address	Option name	7	6	5	4	3	2	1	0
48E0h	UID0		LotNum [7:0]						
48E1h	UID1		LotNum [15:8]						
48E2h	UID2		LotNum [23:16]						
48E3h	UID3		Wafe	erNum [4:0]		2	Kcoord [7:5]	
48E4h	UID4		Xc	oord [4:	0]		``	Coord [7:5]	
48E5h	UID5		Ycoord [4:0] LotNum [42:40]					0]	
48E6h	UID6		LotNum [31:24]						
48E7h	UID7				Lot	Num [39	:32]		

Table 67. Unique ID register overview

11.2 Device ID

The STNRG device identification model is coded in the following register area and it cannot be altered by the user.

Address	Option name	Dev ID bits						Dofault sottings		
Address	Option name	7 6 5 4 3 2 1 0						Default settings		
4896h	DVD0		DEV_ID[7:0]						(1)	
4897h	nDVD0		nDEV_ID[7:0]					(2)		
4898h	DVD1	RFU Rev_ID [4:0]					(1)			
4899h	nDVD1		nRFU			nRe	v_ID [4	4:0]		(2)

Table 68.	Dev ID	register	overview
		register	01011101

1. Refer to *Table 69*.

2. The values are the complement of the first of the twice register.

The RFU and nRFU values are reserved and the value may be changed within devices.

Table 69. Device revision model over	view
--------------------------------------	------

STNRG device revision model							
DEV_ID[7:0]	Rev_ID[4:0]	Device name					
0x22	0b00001	STNRG288A					
0x12	0b00001	STNRG328A					
0x04	0b00001	STNRG388A					

Note: Mask the DVD1 and nDVD1 register with 0x1F when read the Rev_ID [4:0] field.

12 Electrical characteristics

12.1 Parameter conditions

Unless otherwise specified, all voltages are referred to VSS. VDDA and VDD must be connected to the same voltage value. VSS and VSSA must be connected together with the shortest wire loop.

12.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max. (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated according to each table specific notes and are not tested in production.

12.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, V_{DD} and $V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.

12.1.3 Typical curves

Unless otherwise specified, all typical curves are given as design guidelines only and are not tested.

12.1.4 Typical current consumption

For typical current consumption measurements, V_{DD} and V_{DDA} are connected together as shown in *Figure 11*.

12.1.5 Loading capacitors

The loading conditions used for pin parameter measurement are shown in *Figure 12*:

12.1.6 Pin output voltage

The input voltage measurement on a pin is described in *Figure 13*.

Figure 13. Pin input voltage

12.2 Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect the device reliability.

Symbol	Ratings	Min.	Max.	Unit	
V_{DDX} - V_{SSX}	Supply voltage ⁽¹⁾	-0.3	6.5	V	
V _{IN}	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	v	
V _{DD} - V _{DDA}	Variation between different power pins		50		
V _{SS} - V _{SSA}	Variation between all the different ground pins ⁽³⁾			mV	
V _{ESD}	Electrostatic discharge voltage	Refer to absolute maximum ratings (electrica sensitivity) in Section 12.4.1 on page 121			

Table 70. Voltage characteristics

1. All power V_{DDX} (V_{DD} , V_{DDA}) and ground V_{SSX} (V_{SS} , V_{SSA}) pins must always be connected to the external power supply.

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN}) value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}.

3. V_{SS} and V_{SSA} signals must be interconnected together with a short wire loop.

Symbol	Ratings	Max. ⁽¹⁾	Unit
I _{VDDX}	Total current into VDDX power lines ⁽²⁾	100	
I _{VSSX}	Total current out of VSSX power lines ⁽²⁾	100	
I _{IO}	Output current sunk by any I/Os and control pin	Ref. to Table 86 on page 105	mA
	Output current source by any I/Os and control pin		
I _{INJ(PIN)} ⁽³⁾ , ⁽⁴⁾	Injected current on any pin	±4	
I _{INJ(TOT)} ⁽³⁾ , ⁽⁴⁾ , ⁽⁵⁾	Sum of injected currents	±20	

1. Data based on characterization results, not tested in production.

2. All power V_{DDX} (V_{DD}, V_{DDA}) and ground V_{SSX} (V_{SS}, V_{SSA}) pins must always be connected to the external power supply.

3. IINJ(PIN) must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}.

4. Negative injection disturbs the analog performance of the device.

5. When several inputs are submitted to a current injection, the maximum I_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with I_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

Symbol	Ratings	Max.	Unit
T _{STG}	Storage temperature range	-65 to 150	°C
TJ	Maximum junction temperature	150	C

Table 72. Thermal characteristics

12.3 Operating conditions

The device must be used in operating conditions that respect the parameters listed in *Table 73*. In addition, a full account must be taken for all physical capacitor characteristics and tolerances.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
f _{CPU}	Internal CPU clock frequency	$\text{-40} \leq T_A \leq 105 \ ^\circ C$	0		16	MHz
V _{DD1} , V _{DDA1}	Operating voltages		3 ⁽¹⁾		5.5 ⁽¹⁾	
V _{DD} , V _{DDA}	Nominal operating voltages		3.3 ⁽¹⁾		5 ⁽¹⁾	V
	Core digital power supply			1.8 ⁽²⁾		
V _{OUT}	CVOUT: capacitance of external capacitor ⁽³⁾		470		3300	nF
	ESR of external capacitor ⁽²⁾	at 1 MHz	0.05		0.2	Ω
	ESL of external capacitor ⁽²⁾				15	nH
$\Theta_{JA}^{(4)}$	FR4 multilayer PCB	TSSOP38 TSSOP28		80		°C/W
		VFQFPN32		26		°C/W
TA	Ambient temperature	Pd = 100 mW	-40		105	°C

Table 73. General operating conditions
--

1. The external power supply can be within range from 3 V up to 5.5 V although IC performances are optimized for a power supply equal to 3.3 V.

2. Internal core power supply voltage.

3. Care should be taken when the capacitor is selected due to its tolerance, its dependency on temperature, DC bias and frequency.

4. To calculate P_{Dmax} (T_A), use the formula $P_{Dmax} = (T_{Jmax} - T_A)/\Theta_{JA}$.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
+	VDD rise time rate		2 µs/V		1 sec./V ⁽²⁾	
t _{VDD}	VDD fall time rate		2 µs/V		1 sec./V ⁽²⁾	
t _{TEMP}	Reset release delay	V_{DD} rising		3		ms
V _{IT} +	Power-on reset threshold		2.65	2.8	2.98	V
V _{IT} -	Brownout reset threshold		2.58	2.73	2.88	
V _{HYS(BOR)}	Brownout reset hysteresis			70		mV

 Table 74. Operating conditions at power-up/power-down

1. Guaranteed by design, not tested in production.

2. Power supply ramp must be monotone.

12.3.1 VOUT external capacitor

The stabilization of the main regulator is achieved by connecting an external capacitor $C_{VOUT}^{(c)}$ to the VOUT pin. The C_{VOUT} is specified in *Section 12.3: Operating conditions* Care should be taken to limit the series inductance to less than 15 nH.

12.3.2 Supply current characteristics

The STNRG supply current is calculated by summing the supply base current in the desired operating mode as per *Table 75*, with the peripheral supply current value reported in *Table 67 on page 84* and *Table 68 on page 85*.

For example, considering an application where:

- f_{MASTER} = f_{CPU} = 16 MHz provided by HSI internal RC oscillator
- CPU code execution in Flash
- All base peripheral actives: I²C, UART, DALI, ITC, GPIO0, SysTmr, WWDG and IWDG
- ADC conversion frequency $f_{ADC} = 5.3 \text{ MHz}$
- ACU (comparator and DAC units) active
- 6 PWM toggling at f_{PWM} = 0.5 MHz provided by 6 SMEDs running at f_{SMED} = 12 MHz (N_{PWM} = 6).

c. ESR is the equivalent series resistance and ESL is the equivalent inductance.

The total current consumption is given by *Equation 1*:

Equation 1

 $I_{DD} = I_{DD(Run2)} + I_{DD(ADC2)} + I_{DD(ACU)} + I_{DD(PLL)} + I_{DD(PWM)}$

where $I_{DD(PWM)} = I_{DD(PWM1)} \times N_{PWM}$

More generally, the PWM current consumption is given for each fSMED clock grouping, by *Equation 2*:

Equation 2

 $\mathbf{I}_{\mathsf{DD}(\mathsf{PWM})} = \Sigma_{i=1}^{\mathsf{Nf}_{\mathsf{SMED}}} \{\mathbf{I}_{\mathsf{DD}[\mathsf{PWM}(i1)]} \bullet \mathbf{N}_i\}$

where $i = f_{SMED}$ clock group index; N_i = PWM number of the i_th clock group;

 N_{fSMED} = f_{SMED} clock group number.

IC supply base current consumption

Table 75 summarizes the current consumption measured on V_{DD}/V_{DDA} supply pins in relevant operative conditions.

Symbol	Code	(Clock		Peripheral	Consumption ⁽¹⁾		Note
On mode	Code	f _{MASTE}	ER	f _{CPU}	Periph ⁽²⁾ , ⁽³⁾	Typ. ⁽⁴⁾	Max. ⁽⁴⁾	Description
Op. mode	area	Clock	MHz	MHz	Enb/Dis	mA	mA	Description
I _{DD(Run1)}	Flash	HSI	2	2	All	2.3	2.77	Reset exit condition
I _{DD(Run2)}	Flash	HSI	16	16	All	9.4	11.3	
I _{DD(Run3)}	RAM	HSI	16	16	All	4.2	5.1	
	Flash	HSE ⁽⁵⁾	16	16	All	10.0	12.1	V_{DD}/V_{DDA} = 3.3 V
I _{DD(Run4)}	FIASI	TIGE ?	10	10	All	10.6	12.74	$V_{DD}/V_{DDA} = 5 V$
	RAM	HSE ⁽⁵⁾ 16	16	16	All	4.6	5.53	V_{DD}/V_{DDA} = 3.3 V
I _{DD(Run5)}		HISLAND	10	10	All	5.2	6.63	$V_{DD}/V_{DDA} = 5 V$
I _{DD(SLOW1)}	Flash	HSI	16	2	All	3.6	4.33	
I _{DD(SLOW2)}	RAM	HSI	16	2	All	2.9	3.5	
	Flash	HSE ⁽⁵⁾	16	2	All	3.9	4.7	V_{DD}/V_{DDA} = 3.3 V
I _{DD(SLOW3)}	1 10311	HOL	10	2	All	4.5	5.5	$V_{DD}/V_{DDA} = 5 V$
I _{DD(SLOW4)}	Flash	HSI	16	0.125	All	2.7	3.3	
	Flash	HSE ⁽⁵⁾	16	0.125	All	3.0	3.7	V_{DD}/V_{DD} = 3.3 V
I _{DD(SLOW5)}	1 10511	HOL	10	0.125	All	3.6	4.4	$V_{DD}/V_{DDA} = 5 V$
I _{DD(SLOW6)}	Flash	LSI	0.153	0.153	All	1.5	1.9	
I _{DD(WFI1)}	Flash	HSI	16	16	All	2.6	3.2	
	Flash	HSE ⁽⁵⁾	16	16	All	3.1	3.8	V _{DD} /V _{DDA} =3.3 V
I _{DD(WFI2)}	11031	HOE /	10	10	All	3.8	5.6	V _{DD} /V _{DDA} =5 V

Table 75. Supply base current consumption at V_{DD}/V_{DDA} = 3.3/5 V

1. Data based on characterization results not tested in production.

2. "All" means: I²C, UART, DALI, ITC, GPIO0, SysTmr, WWDG and IWDG peripherals active.

3. The peripheral current consumption is supplied by the VCORE voltage (1.8 V).

4. Temperature operating: $T_A = 25$ °C.

5. HSE frequency provided by external quartz.

IC low power current consumption

Table 76 summarizes the current consumption measured on V_{DD}/V_{DDA} supply pins in power saving conditions.

Symbol	Code	Cloc	k	Perip	heral	Consumption ⁽¹⁾		Note	
Op. mode	Code	f _{MASTE}	f _{MASTER}		MVRreg. ⁽⁵⁾	Typ. ⁽⁶⁾ , ⁽⁷⁾	Max. ⁽⁷⁾ , ⁽⁸⁾	Description	
(2), (3)	area	Source	MHz	Enable	Enable	mA	mA		
I _{DD(AHLT1)}	Flash	HSI	16	Enable	Enable	0.23	0.32	AWU clocked by LSI	
I _{DD(AHLT2)}	Flash	HSI	16	Enable	Disable	0.085	0.12	AWU clocked by LSI	
	Flash	HSE ⁽⁹⁾ , ⁽¹⁰⁾	16	Enable	Enable	0.73	0.90	V_{DD}/V_{DDA} =3.3 V	
I _{DD(AHLT3)}	FIASI	П Б Е ^{, ,} , [,] ,	10	LIIADIC	LIIADIE	1.4	1.7	$V_{DD}/V_{DDA} = 5 V$	
1	Flash	HSE ⁽⁹⁾ , ⁽¹⁰⁾	16	Enable	Disable	0.65	0.95	V_{DD}/V_{DDA} =3.3 V	
IDD(AHLT4)	1 10511	TIOL (), ()	10	LIIADIC	Disable	1.2	1.45	$V_{DD}/V_{DDA} = 5 V$	
I _{DD(HLT1)}	Flash	HSI	16	Enable	Disable	0.087	0.13		
1	Flash	HSE ⁽⁹⁾ , ⁽¹⁰⁾	16	Enable	Disablo	0.075	0.11	V_{DD}/V_{DDA} =3.3 V	
IDD(HLT2)	1 10511	HSE ⁽³⁾ , (10)	10	Enable	Disable	0.090	0.15	V_{DD}/V_{DDA} = 5 V	

Table 76. Supply low power consumption at $V_{DD}/V_{DDA} = 3.3/5 V$

1. Data based on characterization results not tested in production.

2. Active-halt op. mode: all peripherals except AWU and IWDG are disabled (clock gated).

3. HALT op. mode: all peripherals are disabled (clock gated).

4. E²PROM is considered always enabled.

5. V_{CORE} main DC voltage regulator.

6. Temperature operating: T_A = 25 °C.

 All the analog input signals are connected to GND; the signals of the port P0, P1 and P2 are configured as input with pullup enabled.

8. Temperature operating: T_A = 105 °C.

9. HSE frequency provided by external quartz.

10. AWU clocked by HSE source clock.

IC peripheral current consumption (3.3 V)

Table 77 summarizes the peripheral current consumption measured on $V_{\text{DD}}/V_{\text{DDA}}$ supply pins.

Symbol		Clo				Peripherals	Consumption ⁽¹⁾			
	PLL	f _{SMED} ⁽²⁾	f _{PWM} ⁽³⁾	f _{ADC} ⁽⁴⁾	ADC ⁽⁵⁾	PWM ⁽⁶⁾ , ⁽⁷⁾	ACU ⁽⁸⁾	Typ. ⁽⁹⁾	Max ⁽⁹⁾	
Op. mode	Enb/dis	MHz	MHz	MHz	Enb/dis	Num	Enb/dis	mA	mA	
I _{DD(PLL)}	Enab	0	0	0	Disab	0	Disab	2.3	2.7	
I _{DD(ACU)}	Disab	0	0	0	Disab	0	Enab	1.9	2.3	
IDD(PWM1PLL96)						1		1.8	2.1	
I _{DD(PWM4PLL96)}	Enab	96	0.5	0	Disab	4	Disab	6.69	8.32	
IDD(PWM5PLL96)		90	0.5	0	DISab	5	DISab	8.55	10.4	
IDD(PWM6PLL96)						6		10.12	12.2	
I _{DD(PWM1PLL48)}						1		1.12	1.4	
I _{DD(PWM4PLL48)}	Enab	40	0.5	0	Diach	4	Diach	4.31	5.31	
I _{DD(PWM5PLL48)}	Enab	Enab	48	0.5	0	Disab	5	Disab	5.6	6.8
I _{DD(PWM6PLL48)}						6		6.54	7.85	
I _{DD(PWM1PLL24)}						1		0.71	0.9	
I _{DD(PWM4PLL24)}	Enab	24	0.5	0	Disab	4	Disab	2.89	3.54	
I _{DD(PWM5PLL24)}	LIIAD	24	0.0		Disub	5		3.9	4.7	
I _{DD(PWM6PLL24)}						6		4.39	5.27	
I _{DD(PWM1PLL12)}						1		0.6	0.7	
I _{DD(PWM4PLL12)}	Enab	12	0.5	0	Disab	4	Disab	2.2	2.69	
I _{DD(PWM5PLL12)}	LIIAD	12	0.0	0	DISab	5	DISab	2.95	3.6	
I _{DD(PWM6PLL12)}						6		3.33	4	
I _{DD(PWM1PLL6)}						1		0.5	0.6	
I _{DD(PWM4PLL6)}	Enab	6	0.5	0	Disab	4	Disab	1.85	2.26	
I _{DD(PWM5PLL6)}		0	0.5	0	Disdu	5	DISAD	2.6	3.2	
I _{DD(PWM6PLL6)}						6		2.81	3.4	
I _{DD(PWM1HSI16)}						1		0.5	0.6	
I _{DD(PWM4HSI16)}	Enab	inab 16	0.5	0	Disab	4	– Disab	1.79	2.19	
I _{DD(PWM5HSI16)}	Enab					5		2.3	3	
I _{DD(PWM6HSI16)}						6		2.63	3.3	

Table 77. Peripheral supply current consumption at $V_{DD}/V_{DDA} = 3.3 V$

Symbol		Clo	ck		Peripherals			Consumption ⁽¹⁾		
Op. mode	PLL	f _{SMED} ⁽²⁾	f _{PWM} ⁽³⁾	f _{ADC} ⁽⁴⁾	ADC ⁽⁵⁾	PWM ⁽⁶⁾ , ⁽⁷⁾	ACU ⁽⁸⁾	Тур. ⁽⁹⁾	Max. ⁽⁹⁾	
op. mode	Enb/dis	MHz	MHz	MHz	Enb/dis	Num.	Enb/dis	mA	mA	
I _{DD(PWM1HSI8)}						1		0.4	0.5	
I _{DD(PWM4HSI8)}	Enab	8	0.5	0	Disab	4	Disab	1.39	1.7	
I _{DD(PWM5HSI8)}	Enab	0	0.5	U		5		1.95	2.4	
I _{DD(PWM6HSI8)}						6		2.12	2.55	
I _{DD(PWM1HSI4)}							1		0.3	0.4
I _{DD(PWM4HSI4)}	Enab	4	0.5	0.5 0	Disab	4	- Disab	1.21	1.48	
I _{DD(PWM5HSI4)}		4	0.5			5		1.7	2.2	
I _{DD(PWM6HSI4)}						6		1.78	2.2	
I _{DD(PWM1HSI2)}						1		0.25	0.3	
I _{DD(PWM4HSI2)}	- Enab	2	0.5	0	Disab	4	Disab	1.07	1.31	
I _{DD(PWM5HSI2)}		2	0.5	0	Disab	5	Disab	1.52	1.9	
I _{DD(PWM6HSI2)}]					6		1.60	1.93	
I _{DD(ADC1)}	Disab	0	0	1	Enab	0	Disab	1.55	1.87	
I _{DD(ADC2)}	Disab	0	0	5.3	Enab	0	Disab	1.6	1.95	
I _{DD(ADC3)}	Enab	0	0	6	Enab	0	Disab	1.56	1.88	

1. Data based on characterization results not tested in production.

SMED frequency:
 96 MHz and 6 MHz frequencies require the PLL enabled.
 Current table shows only a subset value of possible SMED frequencies.

PWM frequency:

 PWM toggle frequency is considered fixed to 500 kHz, close to the maximum applicative value.

4. ADC frequency:
- 6 MHz frequency requires the PLL enabled.
- Current table shows only a subset value of possible ADC frequencies

5. ADC configured in circular mode.

- 6. Number of active PWMs.
- 7. PWM pins are loaded with a CL (load capacitance) of 50 pF.
- 8. If enabled all DACs and comparator units are active.
- 9. Temperature operating: T_A = 25 °C

IC peripheral current consumption (5 V)

Table 78 summarizes the peripheral current consumption measured on $V_{\text{DD}}/V_{\text{DDA}}$ supply pins.

Symbol		Clo	ock		Peripherals			Consumption ⁽¹⁾		
On mode	PLL	f _{SMED} ⁽²⁾	f _{PWM} ⁽³⁾	f _{ADC} ⁽⁴⁾	ADC ⁽⁵⁾	PWM ⁽⁶⁾ , ⁽⁷⁾	ACU ⁽⁸⁾	Typ. ⁽⁹⁾	Max. ⁽⁹⁾	
Op. mode	Enb/dis	MHz	MHz	MHz	Enb/dis	Num.	Enb/dis	mA	mA	
I _{DD(PLL)}	Enab	0	0	0	Disab	0	Disab	2.32	2.78	
I _{DD(ACU)}	Disab	0	0	0	Disab	0	Enab	2.22	2.66	
I _{DD(PWM1PLL96)}						1		1.81	2.17	
I _{DD(PWM4PLL96)}	Enab	96	0.5	0	Disab	4	Disab	6.98	8.69	
I _{DD(PWM5PLL96)}	Enap	90	0.5	0	DISab	5	DISau	9.0	10.8	
I _{DD(PWM6PLL96)}						6		10.49	12.52	
IDD(PWM1PLL48)						1		1.18	1.42	
I _{DD(PWM4PLL48)}	- 	48	0.5	0	Diach	4	Diach	4.58	5.65	
I _{DD(PWM5PLL48)}	Enab	Enab	40	0.5	0	Disab	5	Disab	5.9	7.5
IDD(PWM6PLL48)						6		6.88	8.26	
I _{DD(PWM1PLL24)}						1		0.8	0.95	
I _{DD(PWM4PLL24)}	Enab	24	0.5	0	Disab	4	Disab	3.16	3.88	
I _{DD(PWM5PLL24)}	LIIAD	24	0.5		Disub	5	Bioub	4.2	5.2	
IDD(PWM6PLL24)						6		4.73	5.68	
I _{DD(PWM1PLL12)}						1		0.6	0.7	
I _{DD(PWM4PLL12)}	Enab	12	0.5	0	Disab	4	Disab	2.46	3.01	
IDD(PWM5PLL12)	LIIAD	12	0.5	0	Disab	5	DISab	3.3	4.2	
IDD(PWM6PLL12)						6		3.66	4.4	
I _{DD(PWM1PLL6)}						1		0.5	0.6	
I _{DD(PWM4PLL6)}	Enab	6	0.5	0	Disab	4	Disab	2.11	2.58	
I _{DD(PWM5PLL6)}	LIIAU	U	0.0	U	Disab	5	01500	2.9	3.6	
I _{DD(PWM6PLL6)}						6		3.11	3.75	
I _{DD(PWM1HSI16)}						1		0.6	0.7	
I _{DD(PWM4HSI16)}	Enab	16	0.5	0	Disab	4	Disab	2.04	2.49	
I _{DD(PWM5HSI16)}	LIIAU	10				5	01300	2.8	3.4	
I _{DD(PWM6HSI16)}						6		3.13	3.78	

Table 78. Peripheral supply current consumption at $V_{DD}/V_{DDA} = 5 V$

Symbol	_		ock			Peripherals		Consumption ⁽¹⁾	
On mode	PLL	f _{SMED} ⁽²⁾	f _{PWM} ⁽³⁾	f _{ADC} ⁽⁴⁾	ADC ⁽⁵⁾	PWM ⁽⁶⁾ , ⁽⁷⁾	ACU ⁽⁸⁾	Typ. ⁽⁹⁾	Max. ⁽⁹⁾
Op. mode	Enb/dis	MHz	MHz	MHz	Enb/dis	Num.	Enb/dis	mA	mA
I _{DD(PWM1HSI8)}						1		0.5	0.6
I _{DD(PWM4HSI8)}	Enab	8	0.5	0	Disab	4	Dicab	1.64	2
I _{DD(PWM5HSI8)}	Enab	0	0.5	0	DISab	5	Disab	2.3	2.9
I _{DD(PWM6HSI8)}						6		2.56	3.1
I _{DD(PWM1HSI4)}	Enab					1		0.47	0.55
I _{DD(PWM4HSI4)}		4	0.5	0	Disab	4	- Disab	1.48	1.81
I _{DD(PWM5HSI4)}		4				5		2.2	2.7
I _{DD(PWM6HSI4)}	-					6		2.33	2.78
I _{DD(PWM1HSI2)}						1		0.4	0.54
I _{DD(PWM4HSI2)}	Enab	2	0.5	0	Disab	4	Disab	1.31	1.6
I _{DD(PWM5HSI2)}	LIIAD	2	0.5	0	Disab	5	Disab	1.9	2.3
I _{DD(PWM6HSI2)}						6		2.1	2.49
I _{DD(ADC1)}	Disab	0	0	1	Enab	0	Disab	2.11	2.54
I _{DD(ADC2)}	Disab	0	0	5.3	Enab	0	Disab	2.16	2.6
I _{DD(ADC3)}	Enab	0	0	6	Enab	0	Disab	2.17	2.61

Table 78. Peripheral supply	v current consumption at V	$V_{DDA} = 5 V$ (continued)
	our one oonounption ut t	

1. Data based on characterization results not tested in production.

SMED frequency:
 96 MHz and 6 MHz frequencies require the PLL enabled.
 Current table shows only a subset value of possible SMED frequencies.

PWM frequency:

 PWM toggle frequency is considered fixed to 500 kHz, close to the maximum applicative value.

4. ADC frequency:
- 6 MHz frequency requires the PLL enabled.
- Current table shows only a subset value of possible ADC frequencies.

5. ADC configured in circular mode.

- 6. Number of active PWMs.
- 7. PWM pins are loaded with a CL (load capacitance) of 50 pF.
- 8. If enabled all DACs and comparator units are active.
- 9. Temperature operating: $T_A = 25$ °C.

PWM current consumption overview

From *Figure 15* to *Figure 18* provide an outline view of PWM current consumption results. The consumptions are evaluated considering the maximum current at $T_A = 25$ °C with different SMED operating frequencies. The charts summarize the measurements carried out from *Table 77* and *Table 78* allowing users to derive the PWM current consumption values.

Figure 15. PWM current consumption with f_{SMED} = PLL f_{PWM} = 0.5 MHz at V_{DD}/V_{DDA} = 3.3 V

Figure 16. PWM current consumption with f_{SMED} = PLL f_{PWM} = 0.5 MHz at V_{DD}/V_{DDA} = 5 V

Figure 17. PWM current consumption with $\rm f_{SMED}$ = HSI $\rm f_{PWM}$ = 0.5 MHz at $\rm V_{DD}/\rm V_{DDA}$ = 3.3 V

Figure 18. PWM current consumption with $\rm f_{SMED}$ = HSI $\rm f_{PWM}$ = 0.5 MHz at $\rm V_{DD}/\rm V_{DDA}$ = 5 V

12.3.3 Low power mode wake-up time

Table 79 shows the wakeup time to resume the normal operating mode from different low power state.

Symbol	Parameter		Conditions			Max. ⁽¹⁾	Unit
	Wake-up time from	f _{CPU} ≠ f _{MASTER}	$f_{CPU} \neq f_{MASTER}$ = 0 to 16 MHz				
t _{WU(WFI)}	wait mode to run mode ⁽²⁾	f _{CPU} = f _{MASTER} = 16 MHz					
	MVR voltage	Flash in operating mode ⁽⁵⁾		4 ⁽⁶⁾			
+	Wake-up time active halt mode to run mode ⁽²⁾	regulator on ⁽⁴⁾	Flash in power- down mode ⁽⁵⁾	HSI (after	6 ⁽⁶⁾		μs
t _{WU(AH)}		MVR voltage	Flash in operating mode ⁽⁵⁾	wake-up)	47 ⁽⁶⁾		
		regulator off ⁽⁴⁾	regulator off ⁽⁴⁾ Flash in power- down mode ⁽⁵⁾		49 ⁽⁶⁾		1
Wake-up time from		Flash in operating mode ⁽⁵⁾			51		
t _{WU(H)}	halt mode to run mode ⁽²⁾	Flash in power	-down mode ⁽⁵⁾		53		

Table	79.	Wake-up	times
-------	-----	---------	-------

1. Data based on characterization results, not tested in production.

2. Measured from the interrupt event to the interrupt vector fetch.

3. $t_{WU(WFI)} = 2 \times 1/f_{MASTER} + 7 \times 1/f_{CPU}$.

4. Configured by the REGAH bit in the CLK_ICKR register.

5. Configured by the AHALT bit in the FLASH_CR1 register.

6. Plus 1 LSI clock depending on synchronization (f_{LSI} = 153.6 kHz).

12.3.4 External clock sources and timing characteristics

HSE user external clock

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 80. HSE user external clock charact	teristics
---	-----------

Symbol	Parameter	Conditions	Min.	Max.	Unit
f _{HSE_ext}	User external clock source frequency	-40 °C $\leq T_A \leq$ 105 °C	0	16 ⁽¹⁾	MHz
V _{HSEH} ⁽²⁾	HSEOSCIN input pin high level voltage		0.7 x V _{DD}	V _{DD}	V
V _{HSEL} ⁽²⁾	HSEOSCIN input pin low level voltage		V _{SS}	0.3 x V _{DD}	v
I _{LEAKHSE} ⁽²⁾	HSEOSCIN input pin leakage	$V_{SS} \leq V_{IN} \leq V_{DD}$	-1	+1	μA

1. In case fHSE is configured as a direct clock for the SMED logics the maximum frequency can be 24 MHz.

2. Data based on characterization results, not tested in production.

Figure 19. HSE external clock source

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy, etc.).

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
f _{HSE}	External high speed oscillator frequency		1		16 ⁽¹⁾	MHz
R _F	Feedback resistor			220		kΩ
C _{L1} , C _{L2} ⁽²⁾	Recommended load capacitance ⁽³⁾				20	pF
I _{DD(HSE)}	HSE oscillator power consumption				6 (startup) 2 (stabilized)	mA
9 _m	Oscillator transconductance		5			mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized		2.8		ms

Table 81. HSE crystal/ceramic resonator oscillator

1 In case fHSE is configured as a direct clock for the SMED logic the maximum frequency can be 24 MHz.

The oscillator needs two load capacitors, CL1 and CL2, to act as load for the crystal. The total load capacitance (Cload) is $(CL1 \times CL2) / (CL1 + CL2)$. If CL1 = CL2, Cload = CL1 / 2. Some oscillators have built-in load capacitors, CL1 and CL2. 2.

3. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.

 $t_{SU(HSE)}$ is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. 4.

Figure 20. HSE oscillator circuit diagram

The crystal characteristics have to be checked by *Equation* 3.

Equation 3

gm» g_{mCritic}

where $g_{mCritic}$ is calculated with the crystal parameters as follows:

Equation 4

$$g_{mCritic} = (2 \times \pi \times f_{HSE})^2 \times R_m (2C_0 + C)^2$$

and where:

- *Rm*: motional resistance^(d)
- *Lm*: motional inductance^(d)
- *Cm*: motional capacitance^(d)
- CO: shunt capacitance^(d)
- *CL1* = *CL2* = *C*: grounded external capacitance

d. Refer to the application crystal specification.

12.3.5 Internal clock sources and timing characteristics

HSI RC oscillator

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table	82.	HSI	RC	oscillator	

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
f _{HSI}	Frequency			16		MHz
	Accuracy of HSI oscillator (factory calibrated) ⁽¹⁾ , ⁽²⁾	V _{DD} = 3.3 V T _A = 25 °C	-1%		+1%	
ACC _{HSI}		V_{DD} = 3.3 V -40 °C \leq T_A \leq 105 °C	-4%		+4%	%
		V _{DD} = 5 V -40 °C ≤ T _A ≤ 105 °C	-4%		+4%	
t _{SU(HSI)}	HSI oscillator wakeup time including calibration			1		μs

1. Data based on characterization results, not tested in production.

2. Variation referred to f_{HSI} nominal value.

LSI RC oscillator

Subject to general operating conditions for V_{DD} and T_A .

Table 83. LSI RC oscillator

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
f _{LSI}	Frequency			153.6		kHz
ACC _{LSI}	Accuracy of LSI oscillator	$\begin{array}{l} 3.3 \ V \leq V_{DD} \leq 5 \ V \\ -40 \ ^{\circ}C \leq T_A \leq 105 \ ^{\circ}C \end{array}$	-10%		10%	%
t _{SU(LSI)}	LSI oscillator wake-up time			7		μs

1. Guaranteed by design, not tested in production.

PLL internal source clock

Table 84. PLL internal source clock

Symbol	Parameter	Conditions	Min.	Тур.	Max. ⁽¹⁾	Unit
f _{IN}	Input frequency ⁽²⁾	3.3 V \leq V_{DD} \leq 5 V -40 °C \leq T_A \leq 105 °C		16		MHz
f _{OUT}	Output frequency			96		
t _{lock}	PLL lock time				200	μs

1. Data based on characterization results, not tested in production.

2. PLL maximum input frequency 16 MHz.

12.3.6 Memory characteristics

Flash program and memory/data E²PROM memory

General conditions: $T_A = -40$ °C to 105 °C.

Table 85. Flash program memory/data E²PROM memory

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Typ. ⁽¹⁾	Max. ⁽¹⁾	Unit
t _{PROG}	Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes)			6	6.6	
	Fast programming time for 1 block (128 bytes)			3	3.3	ms
t _{ERASE}	Erase time for 1 block (128 bytes)			3	3.3	
N _{WE}	Erase/write cycles ⁽²⁾ (program memory)	T _A = 25 °C	10 K			
	Erase/write cycles ⁽²⁾ (data memory)	T _A = 85 °C	100 K			Cycles
		T _A = 105 °C	35 K			
	Data retention (program memory) after 10 K erase/write cycles at T _A = 25 °C	T _{RET} = 85 °C	15			Years
4	Data retention (program memory) after 10 K erase/write cycles at T_A = 25 °C	T _{RET} = 105 °C	11			
t _{RET}	Data retention (data memory) after 100 K erase/write cycles at T _A = 85 °C	T _{RET} = 85 °C	15			
	Data retention (data memory) after 35 K erase/write cycles at T _A = 105 °C	T _{RET} = 105 °C	6			
I _{DDPRG}	Supply current during program and erase cycles	$-40 \text{ °C} \le T_A \le 105 \text{ °C}$		2		mA

1. Data based on characterization results, not tested in production.

2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte.

12.3.7 I/O port pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified. Unused input pins should not be left floating.

Symbol	Description	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
V _{IL}	Input low voltage	-0.3		0.3 x V _{DD}	
V _{IH}	Input high voltage ⁽²⁾	0.7 x V _{DD}		V _{DD}	
V _{OL1}	Output low voltage at 3.3 V ⁽³⁾ , ⁽⁴⁾			0.4	
V _{OL2}	Output low voltage at 5 V ⁽³⁾ , ⁽⁴⁾			0.5	
V _{OL3}	Output low voltage high sink at 3.3 V / 5 $V^{(2)}$, ⁽⁶⁾ , ⁽⁶⁾			0.6	V
V _{OH1}	Output high voltage at 3.3 $V^{(3)}$, ⁽⁴⁾	V _{DD} - 0.4			
V _{OH2}	Output high voltage at 5 $V^{(3)}$, ⁽⁴⁾	V _{DD} - 0.5			
V _{OH3}	Output high voltage high sink at 3.3 V / 5 V $^{(2)}$, $^{(5)}$, $^{(6)}$	V _{DD} - 0.6			
H _{VS}	Hysteresis input voltage ⁽⁷⁾	0.1 x V _{DD}			1
R _{PU}	Pull-up resistor	30	45	60	kΩ

1. Data based on characterization result, not tested in production.

2. All signals are not 5 V tolerant (input signals can't be exceeded V_{DDX} ($V_{DDX} = V_{DD}$, V_{DDA}).

3. The parameter applicable to signalsGPIO0 [5:0] (product depending) (high sink selectable by high speed config.).

4. The parameter applicable to signals: GPIO1 [5:0]/PWM [5:0] (product depending).

5. The parameter applicable to the signal: SWIM.

6. The parameter applicable to the signal: DIGIN [0]/CCO_clk.

7. Applicable to any digital inputs.

Symbol	Description	Min.	Тур.	Max. ⁽¹⁾	Unit
I _{OL1}	Standard output low level current at 3.3 V and VOL1 $^{(2)}$, $^{(3)}$			1.5	
I _{OL2}	Standard output low level current at 5 V and VOL2 ⁽²⁾ , $^{(3)}$			3	
I _{OLhs1}	High sink output low level current at 3.3 V and VOL3 ⁽²⁾ , $^{(4)}$, $^{(5)}$			5	
I _{OLhs2}	High sink output low level current at 5 V and VOL3 ^{(2),(4), (5)}			7.75	mA
I _{OH1}	Standard output high level current at 3.3 V and VOH1 ⁽²⁾ , $^{(3)}$			1.5	ШA
I _{OH2}	Standard output high level current at 5 V and VOLH2 ⁽²⁾ , $^{(3)}$			3	
I _{OHhs1}	High sink output high level current at 3.3 V and VOH3 $^{(2)}$, $^{(4)}$, $^{(5)}$			5	
I _{OHhs2}	High sink output high level current at 5 V and VOH3 $^{(2)}$, $^{(4)}$, $^{(5)}$			7.75	
I _{LKg}	Input leakage current digital - analog $V_{SS} \leq V_{IN} \leq V_{DD}^{(6)}$			± 1	μA
l_ _{Inj}	Injection current ⁽⁷⁾ , ⁽⁸⁾			± 4	mA
ΣI_{lnj}	Total injection current (sum of all I/O and control pins) ⁽⁷⁾			± 20	ШA

Table 87. Current DC characteristics

1. Data based on characterization result, not tested in production.

2. A high sink selectable by high speed configuration; the parameter applicable to signals: GPIO0 [5:0] (product depending).

- 3. The parameter applicable to signals: GPIO1 [5:0]/PWM [5:0] (product depending).
- 4. The parameter applicable to the signal: SWIM.
- 5. The parameter applicable to the signal: DIGIN [0]/CCO_clk.
- 6. Applicable to any digital inputs.
- 7. Maximum value must never be exceeded.

8. Negative injection current on the ADCIN [7:0] signals (product depending) have to avoid since impact the ADC conversion accuracy.

Symbol	Description	Min.	Тур.	Max. ⁽¹⁾	Unit
f _{IL1}	Digital input signal operating frequency ⁽²⁾ , ⁽³⁾ , ⁽⁴⁾			12	
f _{IH1}	Analog input signal operating frequency ⁽⁵⁾ , ⁽⁶⁾			24	
f _{IH2}	High speed input signal operating frequency ⁽⁷⁾ , ⁽⁸⁾			128	
f _{OL1}	Standard output signal operating frequency with 50 pF max. $load^{(2)}$			2	MHz
f _{OL2}	High sink output signal operating frequency with 50 pF max. load ⁽²⁾ , $^{(3)}$			10	
f _{OH1}	High speed output signal operating frequency with 50 pF max. load ⁽⁷⁾			12	
f _{OH2}	High speed output signal operating frequency with 50 pF max. $load^{(8)}$			32	

Table 88. Operating frequency characteristics

1. Data based on characterization result, not tested in production

2. A high sink selectable by high speed configuration; parameter applicable to signals: GPIO0 [5:0] (product depending).

3. The parameter applicable to the signal: SWIM.

4. The parameter applicable to signals: DIGIN [5:1] (product depending).

5. The parameter applicable to signals: GPIO0 [3:2] when configured as HSE_Oscin/Oscout.

6. The parameter applicable to any analog signals: ADCIN [7:0], CPP [3:0] and CPM3 (product depending).

7. The parameter applicable to signals: GPIO1 [5:0]/PWM [5:0] (product depending).

8. The parameter applicable to the signal: DIGIN [0]/CCO_clk.

12.3.8 Typical output level curves

This section shows the typical output voltage level curves measured on a single output pin for the three pad family present in the STNRG device.

Standard pad

This pad is associated to the following signals: DIGIN [5:1], SWIM and GPIO0 [5:0] when available.

Figure 21. V_{OH} standard pad at 3.3 V

Figure 22. V_{OL} standard pad at 3.3 V

Figure 24. V_{OL} standard pad at 5 V

Fast pad

This pad is associated to the PWM [5:0] signals if the external pin is available.

Figure 25. V_{OH} fast pad at 3.3 V

Figure 28. V_{OL} fast pad at 5 V

High speed pad

This pad is associated to the DIGIN [0] signals.

Figure 31. V_{OH} high speed pad at 5 V

12.3.9 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾		-0.3		0.3 x V _{DD}	
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾		0.7 x V _{DD}		V _{DD} + 0.3	V
V _{OL(NRST)}	NRST output low level voltage ⁽¹⁾	I _{OL} = 2 mA			0.5	
R _{PU(NRST)}	NRST pull-up resistor ⁽²⁾		30	40	60	kΩ
t _{IFP(NRST)}	NRST input filtered pulse ⁽³⁾				75	
t _{INFP(NRST)}	NRST not input filtered pulse ⁽³⁾		500			ns
t _{OP(NRST)}	NRST output filtered pulse ⁽³⁾		15			μs

Table 89. NRST pin characteristics

1. Data based on characterization results, not tested in production.

2. The RPU pull-up equivalent resistor is based on a resistive transistor.

3. Data guaranteed by design, not tested in production.

12.3.10 I²C interface characteristics

Table 90. I²C interface characteristics

Cumhal	Devenueter	Standa	rd mode	Fast m	ode ⁽¹⁾	Unit
Symbol	Parameter	Min. ⁽²⁾	Max. ⁽²⁾	Min. ⁽²⁾	Max. ⁽²⁾	Unit
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽³⁾	900 ⁽³⁾	
t _{r(SDA)} , t _{r(SCL)}	SDA and SCL rise time $(V_{DD} = 3.3 \text{ to } 5 \text{ V})^{(4)}$		1000		300	ns
t _{f(SDA)} , t _{f(SCL)}	SDA and SCL fall time $(V_{DD} = 3.3 \text{ to } 5 \text{ V})^{(4)}$		300		300	
t _{h(STA)}	START condition hold time	4.0		0.6		
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		
Cb	Capacitive load for each bus line ⁽⁵⁾		50		50	pF

1. f_{MASTER} , must be at least 8 MHz to achieve maximum fast I²C speed (400 kHz).

2. Data based on standard I²C protocol requirement, not tested in production.

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time.

4. I^2C multifunction signals require the high sink pad configuration and the interconnection of 1 K Ω pull-up resistances.

5. 50 pF is the maximum load capacitance value to meet the I²C STD timing specifications.

12.3.11 10-bit SAR ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
N	Resolution			10		bit
R _{ADCIN}	ADC input impedance		1			MΩ
f _{ADC}	ADC Clock frequency		1		6 ⁽¹⁾	MHz
V _{IN1}	Conversion voltage range for gain x1		0		1.25 ⁽²⁾ , ⁽³⁾	
V _{IN2}	Conversion voltage range for gain x4 ⁽⁴⁾		0		0.3125 ⁽²⁾ , ⁽³⁾	V
V _{ref}	ADC main reference voltage ⁽⁵⁾			1.250		
t _S	Sampling time	f _{ADC} = 6 MHz		0.50		
t _{STAB}	Wakeup time from ADC standby			30		
t _{CONV1}	Single conversion time including sampling time	f _{ADC} = 6 MHz		2.42		μs
t _{CONV2}	Continuous conversion time including sampling time	f _{ADC} = 6 MHz		3		

Table 91.	ADC	characteristics
-----------	-----	-----------------

1. Frequency generated selecting the PLL source clock.

2. Maximum input analog voltage cannot exceed $V_{\mbox{\scriptsize DDA}}.$

3. Exceeding the maximum voltage on the ADCIN [7:0] signals (product depending) for the related conversion scale must be avoided since the ADC conversion accuracy can be impacted.

4. Product depending

5. ADC reference voltage at $T_A = 25$ °C.

ADC accuracy characteristics at V_{DD}/V_{DDA} 3.3 V

Symbol	Parameter	Conditions ⁽¹⁾	Typ. ⁽²⁾	Min. ⁽³⁾	Max. ⁽³⁾	Unit
E _T	Total unadjusted error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		2.8			
E _O	Offset error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		0.3			
E _G	Gain error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾ , ⁽⁷⁾		0.4			
E _{O+G}	Offset + gain error ⁽⁷⁾ , ⁽⁸⁾	f _{ADC} = 6 MHz		-8.5	9.3	
E _{O+G}	Offset + gain error ⁽⁷⁾ , ⁽⁹⁾	gain 1		-11	11	
E _{O+G}	Offset + gain error ⁽⁷⁾ , ⁽¹⁰⁾			-14.3	11.3	
E _D	Differential linearity error ⁽²⁾ , ⁽³⁾ , ⁽⁴⁾		0.5			
E _L	Integral linearity error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		1.4			LSB
E _T	Total unadjusted error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		2.8			LOD
E _O	Offset error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		0.3			
E _G	Gain error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾ , ⁽⁷⁾		0.4			
E _{O+G}	Offset + gain error ⁽⁷⁾ , ⁽⁸⁾	f _{ADC} = 6 MHz		-12.7	15.5	
E _{O+G}	Offset + gain error ⁽⁵⁾ , ⁽⁹⁾	gain 4 ⁽¹¹⁾		-16.7	18.8	
E _{O+G}	Offset + gain error ⁽⁷⁾ , ⁽¹⁰⁾			-19.2	18.8	
E _D	Differential linearity error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		0.5			
E _L	Integral linearity error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		1.4			

Table 92. ADC accuracy characteristics at V_{DD}/V_{DDA} 3.3 V

1. Measured with RAIN < 10 k Ω (RAIN external series resistance interconnected between the AC signal generator and the ADC input pin).

2. Temperature operating: $T_A = 25$ °C.

- 3. Data based on characterization results, not tested in production.
- 4. ADC accuracy vs. negative injection current. Injecting negative current on any of the analog input pins should be avoided as this reduces the accuracy of the conversion being performed on another analog input. It is recommended a Schottky diode (pin to ground) to be added to standard analog pins which may potentially inject the negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in the I/O port pin characteristic section does not affect the ADC accuracy parameters may be also impacted exceeding the ADC maximum input voltage V_{IN1} or V_{IN2} .
- 5. Results in manufacturing test mode.
- 6. Data aligned with trimming voltage parameters.
- 7. Gain error evaluation with the two point method.
- 8. Temperature operating range: 0 °C \leq T_A \leq 85 °C.
- 9. Temperature operating range: -25 °C \leq T_A \leq 105 °C.
- 10. Temperature operating range: -40 °C \leq $T_A \leq$ 105 °C.
- 11. Product depending.

ADC accuracy characteristics at $V_{\text{DD}}/V_{\text{DDA}}$ 5 V

Symbol	Parameter	Conditions ⁽¹⁾	Typ. ⁽²⁾	Min. ⁽³⁾	Max. ⁽³⁾	Unit
E _T	Total unadjusted error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		TBD			
E _O	Offset error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		0.5			
E _G	Gain error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾ , ⁽⁷⁾		0.4			
E _{O+G}	Offset + gain error ⁽⁷⁾ , ⁽⁸⁾	f _{ADC} = 6 MHz gain 1		-8.3	8.9	
E _{O+G}	Offset + gain error ⁽⁷⁾ , ⁽⁹⁾			-10.9	10.9	
E _{O+G}	Offset + gain error ⁽⁷⁾ , ⁽¹⁰⁾			-13.8	10.9	
E _D	Differential linearity error ⁽²⁾ , ⁽³⁾ , ⁽⁴⁾		0.8			
E _L	Integral linearity error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		2.0			LSB
E _T	Total unadjusted error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		TBD			LOD
E _O	Offset error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		1.2			
E _G	Gain error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾ , ⁽⁷⁾		0.2			
E _{O+G}	Offset + gain error ⁽⁷⁾ , ⁽⁸⁾	f _{ADC} = 6 MHz		-12.2	15.3	
E _{O+G}	Offset + gain error ⁽⁵⁾ , ⁽⁹⁾	gain 4 ⁽¹¹⁾		-16.4	18.5	
E _{O+G}	Offset + gain error ⁽⁷⁾ , ⁽¹⁰⁾			-18.8	18.5	
E _D	Differential linearity error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		0.8			
E _L	Integral linearity error ⁽⁴⁾ , ⁽⁵⁾ , ⁽⁶⁾		2.0			

Table 93. ADC accuracy characteristics at V_{DD}/V_{DDA} 5 V

1. Measured with RAIN <10 k Ω (RAIN external series resistance interconnected between the AC signal generator and the ADC input pin).

2. Temperature operating: $T_A = 25$ °C.

- 3. Data based on characterization results, not tested in production.
- 4. ADC accuracy vs. negative injection current. Injecting negative current on any of the analog input pins should be avoided as this reduces the accuracy of the conversion being performed on another analog input. It is recommended a Schottky diode (pin to ground) to be added to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in the I/O port pin characteristic section does not affect the ADC accuracy. The ADC accuracy parameters may be also impacted exceeding the ADC maximum input voltage V_{IN1} or V_{IN2} .
- 5. Results in manufacturing test mode.
- 6. Data aligned with trimming voltage parameters.
- 7. Gain error evaluation with the two point method.
- 8. Temperature operating range: 0 °C \leq T_A \leq 85 °C.
- 9. Temperature operating range: -25 °C \leq T_A \leq 105 °C.
- 10. Temperature operating range: -40 °C \leq $T_A \leq$ 105 °C.
- 11. Product depending.

ADC equivalent input circuit

Figure 33 shows the ADC equivalent input circuit.

Note:The gain x1 ADC input analog voltage range is from 0 up to 1.25 V.
The gain x4 ADC input analog voltage range is from 0 up to 312.5 mV (check availability on
device).Maximum input analog voltage cannot exceed V
DDA.
ADC input impedance > 1 M Ω .
The ADCIN [7:0] input pins are provided by the ESD protection diodes.

ADC conversion accuracy

ADC accuracy parameter definitions:

- E_T = total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
- E_0 = offset error: deviation between the first actual transition and the first ideal one.
- E_{OG} = offset + gain error (1-point gain): deviation between the last ideal transition and the last actual one.
- E_G = gain error (2-point gain): defined so that $E_{OG} = E_O + E_G$ (parameter correlated to the deviation of the characteristic slope).
- **E**_D = differential linearity error: maximum deviation between actual steps and the ideal one.
- E_{L} = integral linearity error: maximum deviation between any actual transition and the end-point correlation line.

12.3.12 Analog comparator characteristics

Table 94. Analog comparator characteris	tics
---	------

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
V _{CPP}	Comparator positive input voltage range	-40 °C $\leq T_A \leq 105$ °C	0		1.23 ⁽²⁾	V
V _{CPM}	Comparator negative external input voltage range		0		1.23 ⁽²⁾ , ⁽³⁾	V
C _{IN}	Input capacitance			3		pF
V _{offset}	Comparator offset error				15	mV
t _{COMP}	Comparison delay time				50 ⁽⁴⁾ , ⁽⁵⁾	ns

1. Data based on characterization results, not tested in production.

2. Maximum analog input voltage cannot exceed $V_{\mbox{\scriptsize DDA}}.$

3. The comparator 3 can be configured with the external reference voltage signal CPM3.

4. The overdrive voltage is \pm 50 mV.

5. This parameter doesn't consider the delay time of comparator signal synchronization stages and SMED logic.

Symbol	Parameter Conditions	Conditions	Hysteresis positive ⁽¹⁾		Hysteresis negative ⁽¹⁾		Unit
		Min.	Max.	Max.	Max.		
V _{HYST0}	Hysteresis voltage code 0			No hys	teresis		
V _{HYST1} , V _{HYST2}	Hysteresis voltage code1, 2		N. A.				
V _{HYST3}	Hysteresis voltage code 3		4	52	0	-60	
V _{HYST4}	Hysteresis voltage code 4	-40 °C \leq T _A \leq 105 °C	13	78	-13	-80	mV
V _{HYST5}	Hysteresis voltage code 5		41	148	-45	-150	
V _{HYST6}	Hysteresis voltage code 6		56	203	-58	-205	
V _{HYST7}	Hysteresis voltage code 7		123	406	-125	-403	1

Table 95. Analog comparator hysteresis at $V_{\text{DD}}/V_{\text{DDA}}$ 3.3 V

1. Data based on characterization results, not tested in production.

Symbol	Parameter	Conditions	Hysteresis positive ⁽¹⁾		Hysteresis negative ⁽¹⁾		Unit
			Min.	Max.	Max.	Max.	
V _{HYST0}	Hysteresis voltage code 0			No hys	steresis		
V _{HYST1} , V _{HYST2}	Hysteresis voltage code1, 2			N.	Α.		
V _{HYST3}	Hysteresis voltage code 3		N.	Α.	-1	-56	
V _{HYST4}	Hysteresis voltage code 4	-40 °C \leq T _A \leq 105 °C	2	82	-13	-81	mV
V _{HYST5}	Hysteresis voltage code 5		17	154	-42	-148	
V _{HYST6}	Hysteresis voltage code 6		37	202	-57	-203	
V _{HYST7}	Hysteresis voltage code 7		119	398	-124	-400	1

Table 96. Analog comparator hysteresis at V_{DD}/V_{DDA} 5 V

1. Data based on characterization results, not tested in production.

12.3.13 DAC characteristics

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
N	Resolution			4		bit
V _{full scale}	DAC full scale		1.2		1.26	V
V _{offset}	DAC offset	-40 °C ≤ T _A ≤ 105 °C			4	mV
V _{dac}	DAC out voltage	-40 C $\leq T_A \leq 100$ C	V _{offset}		V _{full scale}	mV
LSB				82		mV
INL	Integral non linearity				0.12	LSB

Table 97. DAC characteristics

1. Data based on characterization results, not tested in production.

Equation 5

$$n[0, 15] : V_{dac(n)} = \frac{(V_{fullscale} - V_{offset})}{15} \bullet (n) + V_{offset}$$

Equation 6

n[1, 14] : V_{dac(n)} =
$$\frac{(V_{fullscale} - V_{offset})}{15} \bullet (n + INL) + V_{offset}$$

where:

- $V_{fullscale} = V_{fullscale}(sample, T)$
- V_{offset} = V_{offset} (sample, T)
- *INL* = INL (sample, n)

DocID027799 Rev 2

12.4 EMC characteristics

12.4.1 Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts * (n + 1) supply pin).

Symbol	Ratings Conditions I		Maximum value	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = 25 °C, conforming to JEDEC/JESD22-A114E	2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = 25$ °C, conforming to ANSI/ESD STM 5.3.1 ESDA	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (machine model)	T _A = 25 °C, conforming to JEDEC/JESD-A115-A	200	

 Table 98. ESD absolute maximum ratings

Data based on characterization results, not tested in production.

12.4.2 Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard.

Table 99. Electrical sensitivity

Symbol	Parameter	Conditions	Level
LU	Static latch-up class	T _A = 105 °C	А

13 Thermal characteristics

The STNRG functionality cannot be guaranteed when the device operating exceeds the maximum chip junction temperature (T_{Jmax}).

T_{Jmax}, in °C, may be calculated using *Equation 7*:

Equation 7

$$T_{Jmax} = T_{Amax} + (PD_{max} \times \Theta J_A)$$

where:

T_{Amax} is the maximum ambient temperature in °C

 ΘJ_A is the package junction to ambient thermal resistance in °C/W

 P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax}$ ($P_{Dmax} = P_{INTmax} + P_{I/Omax}$)

 P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in watts. This is the maximum chip internal power.

 $P_{I/Omax}$ represents the maximum power dissipation on output pins where:

 $P_{I/Omax}$ = (V_{OL} x I_{OL}) + Σ [(V_{DD} - V_{OH}) x I_{OH}],

taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level.

Table 100. Pa	ackage therma	I characteristics
---------------	---------------	-------------------

Symbol	Parameter	Value	Unit
Θ_{JA}	TSSOP38 - thermal resistance junction to ambient ⁽¹⁾	80	°C/W
Θ_{JA}	VFQFPN32 - thermal resistance junction to ambient ⁽¹⁾	26	°C/W
Θ_{JA}	TSSOP28 - thermal resistance junction to ambient ⁽¹⁾	80	°C/W

1. Thermal resistance is based on the JEDEC JESD51-2 with the 4-layer PCB in a natural convection environment.

14 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

14.1 TSSOP38 package information

Figure 35. TSSOP38 package outline

Symbol		Dimensions (mm)		
Symbol -	Min.	Тур.	Max.	
А			1.20	
A1	0.05		0.15	
A2	0.80	1.00	1.05	
b	0.17		0.27	
С	0.09		0.20	
D ⁽²⁾	9.60	9.70	9.80	
E	6.20	6.40	6.60	
E1 ⁽²⁾	4.30	4.40	4.50	
е		0.50		
L	0.45	0.60	0.75	
L1		1.00		
k	0		8	
aaa			0.10	

1. "TSSOP stands for "Thin Shrink Small Outline Package".

2. "Dimensions "D" and "E1"do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

14.2 VFQFPN32 package information

Figure 36. VFQFPN32 package outline

Quarte el		Dimensions (mm)		
Symbol	Min.	Тур.	Max.	
А	0.80	0.90	1.00	
A1	0	0.02	0.05	
A3		0.20		
b	0.18	0.25	0.30	
D	4.85	5.00	5.15	
D2	3.40	3.45	3.50	
E	4.85	5.00	5.15	
E2	3.40	3.45	3.50	
е		0.50	0.55	
L	0.30	0.40	0.50	
ddd			0.08	

Table 102. VFQFPN32 package mechanical data⁽¹⁾

 "VFQFPN stands for "Thermally Enhanced Very thin Fine pitch Quad Flat Package No lead". Very thin profile: 0.80 < A ≤ 1.00 mm.

Details of the terminal 1 are optional but must be located on the top surface of the package by using either a mold or marked features.

Package outline exclusive of any mold flashes dimensions and metal burrs.

14.3 TSSOP28 package information

Figure 37. TSSOP28 package outline

Symbol		Dimensions (mm)		
Symbol	Min.	Тур.	Max.	
А			1.20	
A1	0.05		0.15	
A2	0.80	1.00	1.05	
b	0.19		0.30	
С	0.09		0.20	
D ⁽²⁾	9.60	9.70	9.80	
E	6.20	6.40	6.60	
E1 ⁽³⁾	4.30	4.40	4.50	
е		0.65		
L	0.45	0.60	0.75	
L1		1.00		
k	0		8	
ааа			0.10	

Table 103. TSSOP28 package mechanical data ⁽¹⁾	Table 103	TSSOP28	package	mechanical	data ⁽¹⁾
---	-----------	---------	---------	------------	---------------------

1. "TSSOP stands for "Thin Shrink Small Outline Package".

2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side

3. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.

15 STNRG development tools

The development tools for the STNRG microcontroller are provided by:

- Raisonance with the C compiler and the integrated development environment (Ride7), which provides start-to-finish control of application development including the code editing, compilation, optimization and debugging. The Ride7 supports the RLink in-circuit debugger/programmer using the SWIM interface (USB/SWIM).
- IAR Embedded Workbench[®] for STM8. The IAR Embedded Workbench IAR-EWSTM8 is a software development tool with the highly optimizing C and C++ compiler for the STM8 CPU device.
 The workbench supports the ST-LINK and STice debug probes using the SWIM.

The workbench supports the ST-LINK and STice debug probes using the SWIM interface (USB/SWIM).

16 Order codes

Order code	Package	Packaging
STNRG388A	TSSOP38	Tube
STNRG388ATR	1330F30	Tape and reel
STNRG328A	VFQFPN32	Tube
STNRG328ATR	VEQFENSE	Tape and reel
STNRG288A	TSSOP28	Tube
STNRG288ATR	1000120	Tape and reel

Table 104. Ordering information

17 Revision history

Date	Revision	Changes
28-Apr-2015	1	Initial release.
		Updated <i>Table 2 on page 12</i> (added DALI peripheral to "Communication").
		Updated Figure 1 on page 14 (replaced by new figure).
		Updated Section 4 on page 14 and Figure 2 on page 15 (added DALI).
		Added Section 5.6.3 on page 28.
18-Oct-2016	2	Updated <i>Table 38 on page 64</i> (replaced "control logic" by "interrupt" in SMED-x descriptions, updated cross-references to notes in "Priority" 28 and 29).
		Updated Table 47 on page 73 (several modifications).
		Updated cross-references in <i>Section 10.2.16 on page 78, Section 10.2.18 on page 79, and Section 10.2.20 on page 80.</i>
		Updated <i>Table 68 on page 85</i> (added note 2., updated cross-references).
		Minor modifications throughout document.

Table 105. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID027799 Rev 2