HALOGEN FREE ### Vishay General Semiconductor # Surface Mount TRANSZORB® Transient Voltage Suppressors **SMC (DO-214AB)** #### **LINKS TO ADDITIONAL RESOURCES** | PRIMARY CHARACTERISTICS | | | | | | | |---|---------------------------------|--|--|--|--|--| | V _{WM} | 5.8 V to 188 V | | | | | | | V _{BR} uni-directional | 6.8 V to 220 V | | | | | | | V _{BR} bi-directional | 6.8 V to 220 V | | | | | | | P _{PPM} | 1500 W | | | | | | | P _D | 6.5 W | | | | | | | I _{FSM} (uni-directional only) | 200 A | | | | | | | T _J max. | 150 °C | | | | | | | Polarity | Uni-directional, bi-directional | | | | | | | Package | SMC (DO-214AB) | | | | | | #### **DEVICES FOR BI-DIRECTION APPLICATIONS** For bi-directional devices use CA suffix (e.g. SM15T12CA). Electrical characteristics apply in both directions. #### **APPLICATION NOTES** A 1500 W (SMC) device is normally selected when the threat of transients is from lightning induced transients, conducted via external leads or I/O lines. It is also used to protect against switching transients induced by large coils or industrial motors. Source impedance at component level in a system is usually high enough to limit the current within the peak pulse current (I_{PP}) rating of this series. In an overstress condition, the failure mode is a short circuit. #### **FEATURES** - Low profile package - · Ideal for automated placement - · Glass passivated chip junction - · Available in uni-directional and bi-directional - 1500 W peak pulse power capability with a 10/1000 μs waveform - · Excellent clamping capability - Low inductance - Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C - AEC-Q101 qualified available - Automotive ordering code: base P/NHE3 or P/NHM3 - Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u> #### TYPICAL APPLICATIONS Use in sensitive electronics protection against voltage transients induced by inductive load switching and lighting on ICs, MOSFET, signal lines of sensor units for consumer, computer, industrial, automotive, and telecommunication. #### **MECHANICAL DATA** Case: SMC (DO-214AB) Molding compound meets UL 94 V-0 flammability rating Base P/N-E3 - RoHS-compliant and commercial grade Base P/N-M3 - halogen-free, RoHS-compliant, commercial grade Base P/NHE3_X - RoHS-compliant and AEC-Q101 qualified Base P/NHM3_X - halogen-free, RoHS-compliant, and AEC-Q101 qualified ("_X" denotes revision code e.g. A, B, ...) **Terminals:** matte tin plated leads, solderable per J-STD-002 and JESD 22-B102 E3, M3, HE3, and HM3 suffix meets JESD 201 class 2 whisker test **Polarity:** for uni-directional types the band denotes cathode end, no marking on bi-directional types | MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted) | | | | | | | | |---|-----------------------------------|----------------|------|--|--|--|--| | PARAMETER | SYMBOL | VALUE | UNIT | | | | | | Peak power dissipation with a 10/1000 μs waveform ⁽¹⁾⁽²⁾ (fig. 1) | P _{PPM} | 1500 | W | | | | | | Peak pulse current with a 10/1000 μs waveform ⁽¹⁾ (fig. 3) | I _{PPM} | See next table | Α | | | | | | Power dissipation on infinite heatsink at T _A = 50 °C | P _D | 6.5 | W | | | | | | Peak forward surge current 10 ms single half sine-wave uni-directional only (2) | I _{FSM} | 200 | Α | | | | | | Operating junction and storage temperature range | T _J , T _{STG} | -65 to +150 | °C | | | | | #### Notes - (1) Non-repetitive current pulse, per fig. 3 and derated above $T_A = 25$ °C per fig. 2 - (2) Mounted on 0.31" x 0.31" (8.0 mm x 8.0 mm) copper pads to each terminal # Vishay General Semiconductor | ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted) | | | | | | | | | | | | | |---|------------------|------|------|--|---|-----------|------|---|---|------|----------------------------|--------------| | TYPE (1) | DEV
MAR
CO | KING | VOLT | (DOWN
FAGE
T I _T ⁽²⁾
V) | TEST
CURRENT
I _T
(mA) | STAND-OFF | | EST STAND-OFF VOLTAGE VOLTAGE VCLTAGE VCLTAGE VCLTAGE VC AT IPPM (10/1000 us) (8/20 us) | VOLTAGE
V _C AT I _{PPM} | | ΓAGE
Τ Ι _{ΡΡΜ} | α_{T} | | | UNI | BI | MIN. | MAX. | (IIIA) | (4) | (μΑ) | (V) | (A) | (V) | (A) | | | SM15T6V8A | GDE7 | GDE7 | 6.45 | 7.14 | 10 | 5.80 | 1000 | 10.5 | 143 | 13.4 | 746 | 5.7 | | SM15T7V5A | GDK7 | BDK7 | 7.13 | 7.88 | 10 | 6.40 | 500 | 11.3 | 132 | 14.5 | 690 | 6.1 | | SM15T10A | GDT7 | BDT7 | 9.50 | 10.5 | 1.0 | 8.55 | 10 | 14.5 | 103 | 18.6 | 538 | 7.3 | | SM15T12A | GDX7 | BDX7 | 11.4 | 12.6 | 1.0 | 10.2 | 5.0 | 16.7 | 90.0 | 21.7 | 461 | 7.8 | | SM15T15A | GEG7 | GEG7 | 14.3 | 15.8 | 1.0 | 12.8 | 1.0 | 21.2 | 71.0 | 27.2 | 368 | 8.4 | | SM15T18A | GEM7 | BEM7 | 17.1 | 18.9 | 1.0 | 15.3 | 1.0 | 25.2 | 59.5 | 32.5 | 308 | 8.8 | | SM15T22A | GET7 | BET7 | 20.9 | 23.1 | 1.0 | 18.8 | 1.0 | 30.6 | 49.0 | 39.3 | 254 | 9.2 | | SM15T24A | GEV7 | GEV7 | 22.8 | 25.2 | 1.0 | 20.5 | 1.0 | 33.2 | 45.0 | 42.8 | 234 | 9.4 | | SM15T27A | GEX7 | BEX7 | 25.7 | 28.4 | 1.0 | 23.1 | 1.0 | 37.5 | 40.0 | 48.3 | 207 | 9.6 | | SM15T30A | GFE7 | BFE7 | 28.5 | 31.5 | 1.0 | 25.6 | 1.0 | 41.5 | 36.0 | 53.5 | 187 | 9.7 | | SM15T33A | GFG7 | GFG7 | 31.4 | 34.7 | 1.0 | 28.2 | 1.0 | 45.7 | 33.0 | 59.0 | 169 | 9.8 | | SM15T36A | GFK7 | BFK7 | 34.2 | 37.8 | 1.0 | 30.8 | 1.0 | 49.9 | 30.0 | 64.3 | 156 | 9.9 | | SM15T39A | GFM7 | BFM7 | 37.1 | 41.0 | 1.0 | 33.3 | 1.0 | 53.9 | 28.0 | 69.7 | 143 | 10.0 | | SM15T68A | GGG7 | GGG7 | 64.6 | 71.4 | 1.0 | 58.1 | 1.0 | 92.0 | 16.3 | 121 | 83 | 10.4 | | SM15T100A | GGV7 | GGV7 | 95.0 | 105 | 1.0 | 85.5 | 1.0 | 137 | 11.0 | 178 | 56 | 10.6 | | SM15T150A | GHK7 | GHK7 | 143 | 158 | 1.0 | 128 | 1.0 | 207 | 7.20 | 265 | 38 | 10.8 | | SM15T200A | GHR7 | GHR7 | 190 | 210 | 1.0 | 171 | 1.0 | 274 | 5.50 | 353 | 28 | 10.8 | | SM15T220A | GHR8 | GHR8 | 209 | 231 | 1.0 | 188 | 1.0 | 328 | 4.60 | 388 | 26 | 10.8 | #### Notes - (1) For bi-directional devices add suffix "CA" instead of "A" - $^{(2)}~V_{BR}$ measured after I_{T} applied for 300 μs square wave pulse - $^{(3)}$ For bi-polar devices with V_{RM} = 10 V or under, the I_{RM} limit is doubled | THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted) | | | | | | | |---|---|-------|------|--|--|--| | PARAMETER | SYMBOL | VALUE | UNIT | | | | | Typical thermal resistance, junction to ambient air (1) | al resistance, junction to ambient air ⁽¹⁾ R _{θJA} 75 | | | | | | | Typical thermal resistance, junction to lead | | | | | | | #### Note (1) Mounted on minimum recommended pad layout | ORDERING INFORMATION (Example) | | | | | | | | |--------------------------------|-----------------|------------------------|---------------|------------------------------------|--|--|--| | PREFERRED P/N | UNIT WEIGHT (g) | PREFERRED PACKAGE CODE | BASE QUANTITY | DELIVERY MODE | | | | | SM15T10A-E3/57T | 0.211 | 57T | 850 | 7" diameter plastic tape and reel | | | | | SM15T10A-M3/57T | 0.211 | 5/1 | 650 | 7 diameter plastic tape and reel | | | | | SM15T10A-E3/9AT | 0.211 | 9AT | 3500 | 13" diameter plastic tape and ree | | | | | SM15T10A-M3/9AT | 0.211 | 9A1 | 3500 | | | | | | SM15T10AHE3_A/H (1) | 0.211 | 11 | 950 | 7" diameter plactic tana and real | | | | | SM15T10AHM3_A/H ⁽¹⁾ | 0.211 | Н | 850 | 7" diameter plastic tape and reel | | | | | SM15T10AHE3_A/I (1) | 0.011 | 1 | 2500 | 10" diameter plactic tank and real | | | | | SM15T10AHM3_A/I ⁽¹⁾ | 0.211 | 1 | 3500 | 13" diameter plastic tape and reel | | | | #### Note (1) AEC-Q101 qualified ## Vishay General Semiconductor ### **RATINGS AND CHARACTERISTICS CURVES** (T_A = 25 °C unless otherwise noted) Fig. 1 - Peak Pulse Power Rating Curve Fig. 2 - Pulse Power or Current vs. Initial Junction Temperature Fig. 3 - Pulse Waveform Fig. 4 - Typical Junction Capacitance Uni-Directional Fig. 5 - Typical Transient Thermal Impedance Fig. 6 - Maximum Non-Repetitive Forward Surge Current Uni-Directional Use Only # Vishay General Semiconductor #### **PACKAGE OUTLINE DIMENSIONS** in inches (millimeters) ### **Legal Disclaimer Notice** Vishay ### **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.